دانلود مقاله انگلیسی رایگان:Estimation of the degree of hydration of concrete through automated machine learning based microstructure analysis – A study on effect of image magnification - 2019
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری ماشین رایگان
  • Estimation of the degree of hydration of concrete through automated machine learning based microstructure analysis – A study on effect of image magnification Estimation of the degree of hydration of concrete through automated machine learning based microstructure analysis – A study on effect of image magnification
    Estimation of the degree of hydration of concrete through automated machine learning based microstructure analysis – A study on effect of image magnification

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Estimation of the degree of hydration of concrete through automated machine learning based microstructure analysis – A study on effect of image magnification


    ترجمه فارسی عنوان مقاله:

    Estimation of the degree of hydration of concrete through automated machine learning based microstructure analysis – A study on effect of image magnification


    منبع:

    Sciencedirect - Elsevier - Advanced Engineering Informatics, 42 (2019) 100975: doi:10:1016/j:aei:2019:100975


    نویسنده:

    Srikanth Sagar Bangarua, Chao Wangb,f,⁎, Marwa Hassanc, Hyun Woo Jeond,f, Tarun Ayilurie


    چکیده انگلیسی:

    The scanning electron microscopy (SEM) images are commonly used to understand the microstructure of the concrete. With the advancements in the field of computer vision, many researchers have adopted the image processing technique for the microstructure analysis. Most of the previous methods are not adaptable, nonreproducible, semi-automated, and most importantly all these methods are highly influenced by image magnification. Therefore, to overcome these challenges, this paper presents a machine learning based image segmentation method for microstructure analysis and degree of hydration measurement using SEM images. In addition, the authors looked into the impact of magnification of SEM images on the model accuracy and classifier training for the degree of hydration measurement considering two scenarios. First, the image segmentation was performed using a classifier of specific magnification, and then a common classifier is trained using the image of different magnification. The results show that the Random Forest classifier algorithm is suitable for microstructure analysis using SEM images. Through the statistical analysis, it has been proved that there is no significant effect of magnification on model training and accuracy for the degree of hydration measurement. So, a single classifier can be used to process the images of different magnification of a specimen which reduces the effort of training and computational time. The proposed method can generate highly accurate and reliable results in a shorter time and lower cost. Moreover, the findings in this research can be useful for researchers to determine the optimum magnification required for the microstructure analysis.
    Keywords: Concrete microstructure analysis | Degree of hydration | Machine learning | Image segmentation


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 10
    حجم فایل: 6865 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی