دانلود مقاله انگلیسی رایگان:تمایز متاستازهای ستون فقرات ناشی از سرطانهای ریه و سایر سرطانها با استفاده از رادیولوژی و یادگیری عمیق بر اساس DCE-MRI - 2019
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری عمیق رایگان
  • Differentiation of spinal metastases originated from lung and other cancers using radiomics and deep learning based on DCE-MRI Differentiation of spinal metastases originated from lung and other cancers using radiomics and deep learning based on DCE-MRI
    Differentiation of spinal metastases originated from lung and other cancers using radiomics and deep learning based on DCE-MRI

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Differentiation of spinal metastases originated from lung and other cancers using radiomics and deep learning based on DCE-MRI


    ترجمه فارسی عنوان مقاله:

    تمایز متاستازهای ستون فقرات ناشی از سرطانهای ریه و سایر سرطانها با استفاده از رادیولوژی و یادگیری عمیق بر اساس DCE-MRI


    منبع:

    Sciencedirect - Elsevier - Magnetic Resonance Imaging,Corrected proof,doi:10:1016/j:mri:2019:02:013


    نویسنده:

    Ning Langa, Yang Zhangb, Enlong Zhanga, Jiahui Zhanga, Daniel Chowb, Peter Changb, Hon J. Yub, Huishu Yuana,⁎, Min-Ying Sub,⁎⁎


    چکیده انگلیسی:

    Purpose: To differentiate metastatic lesions in the spine originated from primary lung cancer and other cancers using radiomics and deep learning, compared to traditional hot-spot ROI analysis. Methods: In a retrospective review of clinical spinal MRI database with a dynamic contrast enhanced (DCE) sequence, a total of 61 patients without prior cancer diagnosis and later confirmed to have metastases (30 lung; 31 non-lung cancers) were identified. For hot-spot analysis, a manual ROI was placed to calculate three heuristic parameters from the wash-in, maximum, and wash-out phases in the DCE kinetics. For each case, the 3D tumor mask was generated by using the normalized-cut algorithm. Radiomics analysis was performed to extract histogram and texture features from three DCE parametric maps. Deep learning was performed using these maps as inputs into a conventional convolutional neural network (CNN), as well as using all 12 sets of DCE images into a convolutional long short term memory (CLSTM) network. Results: For hot-spot ROI analysis, mean wash-out slope was 0.25 ± 10% for lung metastases and −9.8 ± 12.9% for other tumors. CHAID classification using a wash-out slope of −6.6% followed by wash-in enhancement ratio of 98% achieved a diagnostic accuracy of 0.79. Radiomics analysis using features representing tumor heterogeneity only reached the highest accuracy of 0.71. Classification using CNN achieved a mean accuracy of 0.71 ± 0.043, whereas a CLSTM improved accuracy to 0.81 ± 0.034. Conclusions: DCE-MRI machine-learning analysis methods have potential to predict lung cancer metastases in the spine, which may be used to guide subsequent workup for confirmed diagnosis.
    Keywords: DCE-MRI | Radiomics | Deep learning | Spinal metastases


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 9
    حجم فایل: 1782 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی