دانلود مقاله انگلیسی رایگان:پیش بینی پرداخت های بستری قبل از آرتروپلاستی با اندام تحتانی با استفاده از آموزش عمیق: کدام مدل معماری بهترین است؟ - 2019
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری عمیق رایگان
  • Predicting Inpatient Payments Prior to Lower Extremity Arthroplasty Using Deep Learning: Which Model Architecture Is Best? Predicting Inpatient Payments Prior to Lower Extremity Arthroplasty Using Deep Learning: Which Model Architecture Is Best?
    Predicting Inpatient Payments Prior to Lower Extremity Arthroplasty Using Deep Learning: Which Model Architecture Is Best?

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Predicting Inpatient Payments Prior to Lower Extremity Arthroplasty Using Deep Learning: Which Model Architecture Is Best?


    ترجمه فارسی عنوان مقاله:

    پیش بینی پرداخت های بستری قبل از آرتروپلاستی با اندام تحتانی با استفاده از آموزش عمیق: کدام مدل معماری بهترین است؟


    منبع:

    Sciencedirect - Elsevier - The Journal of Arthroplasty, 34 (2019) 2235-2242: doi:10:1016/j:arth:2019:05:048


    نویسنده:

    Jaret M. Karnuta, MS a, Sergio M. Navarro, MBA b, Heather S. Haeberle, BS c, J. Matthew Helm, BS d, Atul F. Kamath, MD a, Jonathan L. Schaffer, MD, MBA a, Viktor E. Krebs, MD a, Prem N. Ramkumar, MD, MBA


    چکیده انگلیسی:

    Background: Recent advances in machine learning have given rise to deep learning, which uses hierarchical layers to build models, offering the ability to advance value-based healthcare by better predicting patient outcomes and costs of a given treatment. The purpose of this study is to compare the performance of 2 common deep learning models, traditional multilayer perceptron (MLP), and the newer dense neural network (DenseNet), in predicting outcomes for primary total hip arthroplasty (THA) and total knee arthroplasty (TKA) as a foundation for future musculoskeletal studies seeking to utilize machine learning. Methods: Using 295,605 patients undergoing primary THA and TKA from a New York State inpatient administrative database from 2009 to 2016, 2 neural network designs (MLP vs DenseNet) with different model regularization techniques (dropout, batch normalization, and DeCovLoss) were applied to compare model performance on predicting inpatient procedural cost using the area under the receiver operating characteristic curve (AUC). Models were implemented to identify high-cost surgical cases. Results: DenseNet performed similarly to or better than MLP across the different regularization techniques in predicting procedural costs of THA and TKA. Applying regularization to DenseNet resulted in a significantly higher AUC as compared to DenseNet alone (0.813 vs 0.792, P ¼ .011). When regularization methods were applied to MLP, the AUC was significantly lower than without regularization (0.621 vs 0.791, P ¼ 1.1  1015). When the optimal MLP and DenseNet models were compared in a head-to-head fashion, they performed similarly at cost prediction (P > .999). Conclusion: This study establishes that in predicting costs of lower extremity arthroplasty, DenseNet models improve in performance with regularization, whereas simple neural network models perform significantly worse without regularization. In light of the resource-intensive nature of creating and testing deep learning models for orthopedic surgery, particularly for value-centric procedures such as arthroplasty, this study establishes a set of key technical features that resulted in better prediction of inpatient surgical costs. We demonstrated that regularization is critically important for neural networks in arthroplasty cost prediction and that future studies should utilize these deep learning techniques to predict arthroplasty costs. Level of Evidence: III.
    Keywords: machine learning | deep learning | neural networks | big data | total knee arthroplasty | total hip arthroplasty


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 8
    حجم فایل: 455 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی