دانلود مقاله انگلیسی رایگان:بازآرایی غیرمنطقی انتها به انتها با یادگیری تقویتی عمیق و انتقال شبیه سازی به واقعیت - 2019
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری عمیق رایگان
  • End-to-end nonprehensile rearrangement with deep reinforcement learning and simulation-to-reality transfer End-to-end nonprehensile rearrangement with deep reinforcement learning and simulation-to-reality transfer
    End-to-end nonprehensile rearrangement with deep reinforcement learning and simulation-to-reality transfer

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    End-to-end nonprehensile rearrangement with deep reinforcement learning and simulation-to-reality transfer


    ترجمه فارسی عنوان مقاله:

    بازآرایی غیرمنطقی انتها به انتها با یادگیری تقویتی عمیق و انتقال شبیه سازی به واقعیت


    منبع:

    Sciencedirect - Elsevier - Robotics and Autonomous Systems, 119 (2019) 119-134: doi:10:1016/j:robot:2019:06:007


    نویسنده:

    Weihao Yuan a, Kaiyu Hang b, Danica Kragic c, Michael Y. Wanga, Johannes A. Stork


    چکیده انگلیسی:

    Nonprehensile rearrangement is the problem of controlling a robot to interact with objects through pushing actions in order to reconfigure the objects into a predefined goal pose. In this work, we rearrange one object at a time in an environment with obstacles using an end-to-end policy that maps raw pixels as visual input to control actions without any form of engineered feature extraction. To reduce the amount of training data that needs to be collected using a real robot, we propose a simulation-to-reality transfer approach. In the first step, we model the nonprehensile rearrangement task in simulation and use deep reinforcement learning to learn a suitable rearrangement policy, which requires in the order of hundreds of thousands of example actions for training. Thereafter, we collect a small dataset of only 70 episodes of real-world actions as supervised examples for adapting the learned rearrangement policy to real-world input data. In this process, we make use of newly proposed strategies for improving the reinforcement learning process, such as heuristic exploration and the curation of a balanced set of experiences. We evaluate our method in both simulation and real setting using a Baxter robot to show that the proposed approach can effectively improve the training process in simulation, as well as efficiently adapt the learned policy to the real world application, even when the camera pose is different from simulation. Additionally, we show that the learned system not only can provide adaptive behavior to handle unforeseen events during executions, such as distraction objects, sudden changes in positions of the objects, and obstacles, but also can deal with obstacle shapes that were not present in the training process.
    Keywords: Nonprehensile rearrangement | Deep reinforcement learning | Transfer learnin


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 16
    حجم فایل: 1977 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی