دانلود مقاله انگلیسی رایگان:یک مدل چند کاره مبتنی بر یادگیری عمیق برای پیش بینی سرعت ترافیک شبکه - 2019
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری عمیق رایگان
  • A deep learning based multitask model for network-wide traffic speed prediction A deep learning based multitask model for network-wide traffic speed prediction
    A deep learning based multitask model for network-wide traffic speed prediction

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    A deep learning based multitask model for network-wide traffic speed prediction


    ترجمه فارسی عنوان مقاله:

    یک مدل چند کاره مبتنی بر یادگیری عمیق برای پیش بینی سرعت ترافیک شبکه


    منبع:

    Sciencedirect - Elsevier - Neurocomputing, Corrected proof: doi:10:1016/j:neucom:2018:10:097


    نویسنده:

    Kunpeng Zhang a , Liang Zheng b , ∗, Zijian Liu a , ∗, Ning Jia c


    چکیده انگلیسی:

    This paper proposes a deep learning based multitask learning (MTL) model to predict network-wide traf- fic speed, and introduces two methods to improve the prediction performance. The nonlinear Granger causality analysis is used to detect the spatiotemporal causal relationship among various links so as to select the most informative features for the MTL model. Bayesian optimization is employed to tune the hyperparameters of the MTL model with limited computational costs. Numerical experiments are carried out with taxis’ GPS data in an urban road network of Changsha, China, and some conclusions are drawn as follows. The deep learning based MTL model outperforms four deep learning based single task learn- ing (STL) models (i.e., Gated Recurrent Units network, Long Short-term Memory network, Convolutional Gated Recurrent Units network and Temporal Convolutional Network) and three other classic models (i.e., Support Vector Machine, k -Nearest Neighbors and Evolving Fuzzy Neural Network). The nonlinear Granger causality test provides a reliable guide to select the informative features from network-wide links for the MTL model. Compared with two other optimization approaches (i.e., grid search and random search), Bayesian optimization yields a better tuning performance for the MTL model in the prediction accuracy under the budgeted computation cost. In summary, the deep learning based MTL model with nonlinear Granger causality analysis and Bayesian optimization promises the accurate and efficient traffic speed prediction for a large-scale network.
    Keywords: Short-term traffic speed prediction | Deep learning | Multitask learning | Nonlinear Granger causality | Bayesian optimization


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 13
    حجم فایل: 2398 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی