دانلود مقاله انگلیسی رایگان:دگیری عمیق بهتر از رویکردهای سنتی در توصیه برچسب برای سایتهای اطلاعات نرم افزاری است؟ - 2019
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری عمیق رایگان
  • Is deep learning better than traditional approaches in tag recommendation for software information sites? Is deep learning better than traditional approaches in tag recommendation for software information sites?
    Is deep learning better than traditional approaches in tag recommendation for software information sites?

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Is deep learning better than traditional approaches in tag recommendation for software information sites?


    ترجمه فارسی عنوان مقاله:

    دگیری عمیق بهتر از رویکردهای سنتی در توصیه برچسب برای سایتهای اطلاعات نرم افزاری است؟


    منبع:

    Sciencedirect - Elsevier - Information and Software Technology, 109 (2019) 1-13: doi:10:1016/j:infsof:2019:01:002


    نویسنده:

    Pingyi Zhou a , Jin Liu a , b , ∗ , Xiao Liu c , Zijiang Yang d , John Grundy e


    چکیده انگلیسی:

    Context: Inspired by the success of deep learning in other domains, this new technique been gaining widespread recent interest in being applied to diverse data analysis problems in software engineering. Many deep learning models, such as CNN, DBN, RNN, LSTM and GAN, have been proposed and recently applied to software engineer- ing tasks including effort estimation, vulnerability analysis, code clone detection, test case selection, requirements analysis and many others. However, there is a perception that applying deep learning is a ”silver bullet ”if it can be applied to a software engineering data analysis problem. Object: This motivated us to ask the question as to whether deep learning is better than traditional approaches in tag recommendation task for software information sites. Method: In this paper we test this question by applying both the latest deep learning approaches and some traditional approaches on tag recommendation task for software information sites. This is a typical Software En- gineering automation problem where intensive data processing is required to link disparate information to assist developers. Four different deep learning approaches –TagCNN, TagRNN, TagHAN and TagRCNN –are imple- mented and compared with three advanced traditional approaches –EnTagRec, TagMulRec, and FastTagRec. Results: Our comprehensive experimental results show that the performance of these different deep learning approaches varies significantly. The performance of TagRNN and TagHAN approaches are worse than traditional approaches in tag recommendation tasks. The performance of TagCNN and TagRCNN approaches are better than traditional approaches in tag recommendation tasks. Conclusion: Therefore, using appropriate deep learning approaches can indeed achieve better performance than traditional approaches in tag recommendation tasks for software information sites.
    Keywords: Deep learning | Data analysis | Tag recommendation | Software information site | Software object


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 13
    حجم فایل: 783 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی