دانلود مقاله انگلیسی رایگان:DISL: یادگیری زیرساختار ایزومورفیک عمیق برای بازنمایی شبکه ها - 2019
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری عمیق رایگان
  • DISL: Deep Isomorphic Substructure Learning for network representations DISL: Deep Isomorphic Substructure Learning for network representations
    DISL: Deep Isomorphic Substructure Learning for network representations

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    DISL: Deep Isomorphic Substructure Learning for network representations


    ترجمه فارسی عنوان مقاله:

    DISL: یادگیری زیرساختار ایزومورفیک عمیق برای بازنمایی شبکه ها


    منبع:

    Sciencedirect - Elsevier - Knowledge-Based Systems, Corrected proof, 105086: doi:10:1016/j:knosys:2019:105086


    نویسنده:

    Shicheng Cui a,∗, Tao Li b, Shu-Ching Chen b, Mei-Ling Shyu c, Qianmu Li a,d,e,∗, Hong Zhang a


    چکیده انگلیسی:

    The analysis of complex networks based on deep learning has drawn much attention recently. Generally, due to the scale and complexity of modern networks, traditional methods are gradually losing the analytic efficiency and effectiveness. Therefore, it is imperative to design a network analysis model which caters to the massive amount of data and learns more comprehensive information from networks. In this paper, we propose a novel model, namely Deep Isomorphic Substructure Learning (DISL) model, which aims to learn network representations from patterns with isomorphic substructures. Specifically, in DISL, deep learning techniques are used to learn a better network representation for each vertex (node). We provide the method that makes the isomorphic units self-embed into vertex-based subgraphs whose explicit topologies are extracted from raw graphstructured data, and design a Probability-guided Random Walk (PRW) procedure to explore the set of substructures. Sequential samples yielded by PRW provide the information of relational similarity, which integrates the information of correlation and co-occurrence of vertices and the information of substructural isomorphism of subgraphs. We maximize the likelihood of the preserved relationships for learning the implicit similarity knowledge. The architecture of the Convolutional Neural Networks (CNNs) is redesigned for simultaneously processing the explicit and implicit features to learn a more comprehensive representation for networks. The DISL model is applied to several vertex classification tasks for social networks. Our results show that DISL outperforms the challenging state-of-the-art Network Representation Learning (NRL) baselines by a significant margin on accuracy and weighted-F1 scores over the experimental datasets.
    Keywords: Deep learning | Network representations | Isomorphic substructures | Probability-guided random walk | Convolutional neural networks


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 14
    حجم فایل: 715 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی