دانلود مقاله انگلیسی رایگان:بهینه سازی ازدحام ذرات با محوریت یادگیری عمیق برای بهینه سازی انرژی تولید افزودنی - 2019
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری عمیق رایگان
  • Deep Learning-Driven Particle Swarm Optimisation for Additive Manufacturing Energy Optimisation Deep Learning-Driven Particle Swarm Optimisation for Additive Manufacturing Energy Optimisation
    Deep Learning-Driven Particle Swarm Optimisation for Additive Manufacturing Energy Optimisation

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Deep Learning-Driven Particle Swarm Optimisation for Additive Manufacturing Energy Optimisation


    ترجمه فارسی عنوان مقاله:

    بهینه سازی ازدحام ذرات با محوریت یادگیری عمیق برای بهینه سازی انرژی تولید افزودنی


    منبع:

    Sciencedirect - Elsevier - Journal of Cleaner Production, Journal Pre-proof: 10:1016/j:jclepro:2019:118702


    نویسنده:

    Jian Qin, Ying Liu, Roger Grosvenor, Franck Lacan, Zhigang Jiang


    چکیده انگلیسی:

    The additive manufacturing (AM) process is characterised as a high energy-consuming process, which has a significant impact on the environment and sustainability. The topic of AM energy consumption modelling, prediction, and optimisation has then become a research focus in both industry and academia. This issue involves many relevant features, such as material condition, process operation, part and process design, working environment, and so on. While existing studies reveal that AM energy consumption modelling largely depends on the design-relevant features in practice, it has not been given sufficient attention. Therefore, in this study, design-relevant features are firstly examined with respect to energy modelling. These features are typically determined by part designers and process operators before production. The AM energy consumption knowledge, hidden in the design-relevant features, is exploited for prediction modelling through a design-relevant data analytics approach. Based on the new modelling approach, a novel deep learning-driven particle swarm optimisation (DLD-PSO) method is proposed to optimise the energy utility. Deep learning is introduced to address several issues, in terms of increasing the search speed and enhancing the global best of PSO. Finally, using the design-relevant data collected from a real-world AM system in production, a case study is presented to validate the proposed modelling approach, and the results reveal its merits. Meanwhile, optimisation has also been carried out to guide part designers and process operators to revise their designs and decisions in order to reduce the energy consumption of the designated AM system under study.
    Keywords: Additive Manufacturing | Energy Consumption Modelling | Prediction and Optimisation | Deep Learning | Particle Swarm Optimisation


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 40
    حجم فایل: 1668 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی