دانلود مقاله انگلیسی رایگان:تشخیص خطای دنده نیمه نظارت شده با استفاده از سیگنال لرزش خام بر اساس یادگیری عمیق - 2019
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری عمیق رایگان
  • Semi-supervised gear fault diagnosis using raw vibration signal based on deep learning Semi-supervised gear fault diagnosis using raw vibration signal based on deep learning
    Semi-supervised gear fault diagnosis using raw vibration signal based on deep learning

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Semi-supervised gear fault diagnosis using raw vibration signal based on deep learning


    ترجمه فارسی عنوان مقاله:

    تشخیص خطای دنده نیمه نظارت شده با استفاده از سیگنال لرزش خام بر اساس یادگیری عمیق


    منبع:

    Sciencedirect - Elsevier - Chinese Journal of Aeronautics, Corrected proof: doi:10:1016/j:cja:2019:04:018


    نویسنده:

    Xueyi LI a, Jialin LI a, Yongzhi QUb, David HEa,c,*


    چکیده انگلیسی:

    In aerospace industry, gears are the most common parts of a mechanical transmission system. Gear pitting faults could cause the transmission system to crash and give rise to safety disaster. It is always a challenging problem to diagnose the gear pitting condition directly through the raw signal of vibration. In this paper, a novel method named augmented deep sparse autoencoder (ADSAE) is proposed. The method can be used to diagnose the gear pitting fault with relatively few raw vibration signal data. This method is mainly based on the theory of pitting fault diagnosis and creatively combines with both data augmentation ideology and the deep sparse autoencoder algorithm for the fault diagnosis of gear wear. The effectiveness of the proposed method is validated by experiments of six types of gear pitting conditions. The results show that the ADSAE method can effectively increase the network generalization ability and robustness with very high accuracy. This method can effectively diagnose different gear pitting conditions and show the obvious trend according to the severity of gear wear faults. The results obtained by the ADSAE method proposed in this paper are compared with those obtained by other common deep learning methods. This paper provides an important insight into the field of gear fault diagnosis based on deep learning and has a potential practical application value.
    KEYWORDS : Deep learning | Gear pitting diagnosis | Gear teeth | Raw vibration signal | Semi-supervised learning | Sparse autoencoder


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 9
    حجم فایل: 2136 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی