دانلود مقاله انگلیسی رایگان:استخراج اطلاعات جامع بالینی برای سرطان پستان با استفاده از روشهای یادگیری عمیق - 2019
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری عمیق رایگان
  • Extracting comprehensive clinical information for breast cancer using deep learning methods Extracting comprehensive clinical information for breast cancer using deep learning methods
    Extracting comprehensive clinical information for breast cancer using deep learning methods

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Extracting comprehensive clinical information for breast cancer using deep learning methods


    ترجمه فارسی عنوان مقاله:

    استخراج اطلاعات جامع بالینی برای سرطان پستان با استفاده از روشهای یادگیری عمیق


    منبع:

    Sciencedirect - Elsevier - International Journal of Medical Informatics, Journal Pre-proof, 103985: doi:10:1016/j:ijmedinf:2019:103985


    نویسنده:

    Xiaohui Zhang, Yaoyun Zhang, Qin Zhang, Yuankai Ren, Tinglin Qiu, Jianhui Ma, Qiang Sun


    چکیده انگلیسی:

    Objective Breast cancer is the most common malignant tumor among women. The diagnosis and treatment information of breast cancer patients is abundant in multiple types of clinical fields, including clinicopathological data, genotype and phenotype information, treatment information, and prognosis information. However, current studies are mainly focused on extracting information from one specific type of clinical field. This study defines a comprehensive information model to represent the whole-course clinical information of patients. Furthermore, deep learning approaches are used to extract the concepts and their attributes from clinical breast cancer documents by fine-tuning pretrained Bidirectional Encoder Representations from Transformers (BERT) language models. Materials and Methods The clinical corpus that was used in this study was from one 3A cancer hospital in China, consisting of the encounter notes, operation records, pathology notes, radiology notes, progress notes and discharge summaries of 100 breast cancer patients. Our system consists of two components: a named entity recognition (NER) component and a relation recognition component. For each component, we implemented deep learning-based approaches by fine-tuning BERT, which outperformed other state-of-the-art methods on multiple natural language processing (NLP) tasks. A clinical language model is first pretrained using BERT on a large-scale unlabeled corpus of Chinese clinical text. For NER, the context embeddings that were pretrained using BERT were used as the input features of the Bi-LSTM-CRF (Bidirectional long-short-memory-conditional random fields) model and were fine-tuned using the annotated breast cancer notes. Furthermore, we proposed an approach to fine-tune BERT for relation extraction. It was considered to be a classification problem in which the two entities that were mentioned in the input sentence were replaced with their semantic types. Results Our best-performing system achieved F1 scores of 93.53% for the NER and 96.73% for the relation extraction. Additional evaluations showed that the deep learning-based approaches that fine-tuned BERT did outperform the traditional Bi-LSTM-CRF and CRF machine learning algorithms in NER and the attention-Bi-LSTM and SVM (support vector machines) algorithms in relation recognition. Conclusion In this study, we developed a deep learning approach that fine-tuned BERT to extract the breast cancer concepts and their attributes. It demonstrated its superior performance compared to traditional machine learning algorithms, thus supporting its uses in broader NER and relation extraction tasks in the medical domain.
    Keywords: clinical information extraction | breast cancer | deep learning | fine-tuning BERT | information model


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 26
    حجم فایل: 643 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی