دانلود مقاله انگلیسی رایگان:تقویت داده های سری زمانی و یادگیری عمیق برای شناخت فعالیت تجهیزات ساختمانی - 2019
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری عمیق رایگان
  • Times-series data augmentation and deep learning for construction equipment activity recognition Times-series data augmentation and deep learning for construction equipment activity recognition
    Times-series data augmentation and deep learning for construction equipment activity recognition

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Times-series data augmentation and deep learning for construction equipment activity recognition


    ترجمه فارسی عنوان مقاله:

    تقویت داده های سری زمانی و یادگیری عمیق برای شناخت فعالیت تجهیزات ساختمانی


    منبع:

    Sciencedirect - Elsevier - Advanced Engineering Informatics, 42 (2019) 100944: doi:10:1016/j:aei:2019:100944


    نویسنده:

    Khandakar M. Rashid, Joseph Louis


    چکیده انگلیسی:

    Automated, real-time, and reliable equipment activity recognition on construction sites can help to minimize idle time, improve operational efficiency, and reduce emissions. Previous efforts in activity recognition of construction equipment have explored different classification algorithms anm accelerometers and gyroscopes. These studies utilized pattern recognition approaches such as statistical models (e.g., hidden-Markov models); shallow neural networks (e.g., Artificial Neural Networks); and distance algorithms (e.g., K-nearest neighbor) to classify the time-series data collected from sensors mounted on the equipment. Such methods necessitate the segmentation of continuous operational data with fixed or dynamic windows to extract statistical features. This heuristic and manual feature extraction process is limited by human knowledge and can only extract human-specified shallow features. However, recent developments in deep neural networks, specifically recurrent neural network (RNN), presents new opportunities to classify sequential time-series data with recurrent lateral connections. RNN can automatically learn high-level representative features through the network instead of being manually designed, making it more suitable for complex activity recognition. However, the application of RNN requires a large training dataset which poses a practical challenge to obtain from real construction sites. Thus, this study presents a data-augmentation framework for generating synthetic time-series training data for an RNN-based deep learning network to accurately and reliably recognize equipment activities. The proposed methodology is validated by generating synthetic data from sample datasets, that were collected from two earthmoving operations in the real world. The synthetic data along with the collected data were used to train a long short-term memory (LSTM)-based RNN. The trained model was evaluated by comparing its performance with traditionally used classification algorithms for construction equipment activity recognition. The deep learning framework presented in this study outperformed the traditionally used machine learning classification algorithms for activity recognition regarding model accuracy and generalization.
    Keywords: Construction equipment activity recognition | Inertial measurement unit | Deep learning | Time-series data augmentation | LSTM network | Big data analytics


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 12
    حجم فایل: 2343 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی