دانلود مقاله انگلیسی رایگان:تشخیص نقص تصویر جوش تشخیص عمیق مبتنی بر یادگیری عمیق برخط  با استفاده از شبکه های عصبی همگرا برای آلیاژ آل در جوش قوس رباتیک - 2019
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری عمیق رایگان
  • Weld image deep learning-based on-line defects detection using convolutional neural networks for Al alloy in robotic arc welding Weld image deep learning-based on-line defects detection using convolutional neural networks for Al alloy in robotic arc welding
    Weld image deep learning-based on-line defects detection using convolutional neural networks for Al alloy in robotic arc welding

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Weld image deep learning-based on-line defects detection using convolutional neural networks for Al alloy in robotic arc welding


    ترجمه فارسی عنوان مقاله:

    تشخیص نقص تصویر جوش تشخیص عمیق مبتنی بر یادگیری عمیق برخط با استفاده از شبکه های عصبی همگرا برای آلیاژ آل در جوش قوس رباتیک


    منبع:

    Sciencedirect - Elsevier - Journal of Manufacturing Processes, 45 (2019) 208-216: doi:10:1016/j:jmapro:2019:06:023


    نویسنده:

    Zhifen Zhanga, Guangrui Wena,⁎, Shanben Chenb


    چکیده انگلیسی:

    Accurate on-line weld defects detection is still challenging for robotic welding manufacturing due to the complexity of weld defects. This paper studied deep learning–based on-line defects detection for aluminum alloy in robotic arc welding using Convolutional Neural Networks (CNN) and weld images. Firstly, an image acquisition system was developed to simultaneously collect weld images, which can provide more information of the real-time weld images from different angles including top front, top back and back seam. Then, a new CNN classification model with 11 layers based on weld image was designed to identify weld penetration defects. In order to improve the robustness and generalization ability of the CNN model, weld images from different welding current and feeding speed were captured for the CNN model. Based on the actual industry challenges such as the instability of welding arc, the complexity of the welding environment and the random changing of plate gap condition, two kinds of data augmentation including noise adding and image rotation were used to boost the CNN dataset while parameters optimization was carried out. Finally, non-zero pixel method was proposed to quantitatively evaluate and visualize the deep learning features. Furthermore, their physical meaning were clearly explained. Instead of decreasing the interference from arc light as in traditional way, the CNN model has taken full use of those arc lights by combining them in a various way to form the complementary features. Test results shows that the CNN model has better performance than our previous work with the mean classification accuracy of 99.38%. This paper can provide some guidance for on-line detection of manufacturing quality in metal additive manufacturing (AM) and laser welding.
    Keywords: Deep learning | Defects detection | Al alloy | Robotic arc welding | Convolutional neural networks | Weld images | Feature visualization


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 9
    حجم فایل: 3306 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی