دانلود مقاله انگلیسی رایگان:یادگیری عمیق فعال برای شناسایی مفاهیم و روابط در گزارشات الکتروانسفالوگرافی - 2019
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری عمیق رایگان
  • Active deep learning for the identification of concepts and relations in electroencephalography reports Active deep learning for the identification of concepts and relations in electroencephalography reports
    Active deep learning for the identification of concepts and relations in electroencephalography reports

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Active deep learning for the identification of concepts and relations in electroencephalography reports


    ترجمه فارسی عنوان مقاله:

    یادگیری عمیق فعال برای شناسایی مفاهیم و روابط در گزارشات الکتروانسفالوگرافی


    منبع:

    Sciencedirect - Elsevier - Journal of Biomedical Informatics, 98 (2019) 103265: doi:10:1016/j:jbi:2019:103265


    نویسنده:

    Ramon Maldonado⁎, Sanda M. Harabagiu


    چکیده انگلیسی:

    The identification of medical concepts, their attributes and the relations between concepts in a large corpus of Electroencephalography (EEG) reports is a crucial step in the development of an EEG-specific patient cohort retrieval system. However, the recognition of multiple types of medical concepts, along with the many attributes characterizing them is challenging, and so is the recognition of the possible relations between them, especially when desiring to make use of active learning. To address these challenges, in this paper we present the Self- Attention Concept, Attribute and Relation (SACAR) identifier, which relies on a powerful encoding mechanism based on the recently introduced Transformer neural architecture (Dehghani et al., 2018). The SACAR identifier enabled us to consider a recently introduced framework for active learning which uses deep imitation learning for its selection policy. Our experimental results show that SACAR was able to identify medical concepts more precisely and exhibited enhanced recall, compared with previous methods. Moreover, SACAR achieves superior performance in attribute classification for attribute categories of interest, while identifying the relations between concepts with performance competitive with our previous techniques. As a multi-task network, SACAR achieves this performance on the three prediction tasks simultaneously, with a single, complex neural network. The learning curves obtained in the active learning process when using the novel Active Learning Policy Neural Network (ALPNN) show a significant increase in performance as the active learning progresses. These promising results enable the extraction of clinical knowledge available in a large collection of EEG reports.
    Keywords: Deep learning | Electroencephalography | Active learning | Long-distance relation identification | Concept detection | Attribute classification


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 15
    حجم فایل: 2098 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی