دانلود مقاله انگلیسی رایگان:iFusion: به سمت تلفیق اطلاعاتی کارآمد برای یادگیری عمیق از داده های واقعی و ناهمگن - 2019
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری عمیق رایگان
  • iFusion: Towards efficient intelligence fusion for deep learning from real-time and heterogeneous data iFusion: Towards efficient intelligence fusion for deep learning from real-time and heterogeneous data
    iFusion: Towards efficient intelligence fusion for deep learning from real-time and heterogeneous data

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    iFusion: Towards efficient intelligence fusion for deep learning from real-time and heterogeneous data


    ترجمه فارسی عنوان مقاله:

    iFusion: به سمت تلفیق اطلاعاتی کارآمد برای یادگیری عمیق از داده های واقعی و ناهمگن


    منبع:

    Sciencedirect - Elsevier - Information Fusion, 51 (2019) 215-223: doi:10:1016/j:inffus:2019:02:008


    نویسنده:

    Kehua Guo a , Tao Xu a , Xiaoyan Kui a , ∗ , Ruifang Zhang a , Tao Chi b


    چکیده انگلیسی:

    Deep learning has shown great strength in many fields and has allowed people to live more conveniently and intelligently. However, deep learning requires a considerable amount of uniform training data, which introduces difficulties in many application scenarios. On the one hand, in real-time systems, training data are constantly generated, but users cannot immediately obtain this vast amount of training data. On the other hand, training data from heterogeneous sources have different data formats. Therefore, existing deep learning frameworks are not able to train all data together. In this paper, we propose the iFusion framework, which achieves efficient intelligence fusion for deep learning from real-time data and heterogeneous data. For real-time data, we train only newly arrived data to obtain a new discrimination model and fuse the previously trained models to obtain the discrimination result. For heterogeneous data, different types of data are trained separately; then, we fuse the different discrimination models so that it is not necessary to consider heterogeneous data formats. We use a method based on Dempster-Shafer theory (DST) to fuse the discrimination models. We apply iFusion to the deep learning of medical image data, and the results of the experiments show the effectiveness of the proposed method.
    Keywords: Information| fusion | Real-time data | Heterogeneous data | Deep learning


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 9
    حجم فایل: 1053 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی