دانلود مقاله انگلیسی رایگان:شناسایی و تعیین ساختارهای قلبی و عروقی از CCTA - 2019
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری عمیق رایگان
  • Identification and Quantification of Cardiovascular Structures From CCTA Identification and Quantification of Cardiovascular Structures From CCTA
    Identification and Quantification of Cardiovascular Structures From CCTA

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Identification and Quantification of Cardiovascular Structures From CCTA


    ترجمه فارسی عنوان مقاله:

    شناسایی و تعیین ساختارهای قلبی و عروقی از CCTA


    منبع:

    Sciencedirect - Elsevier - JACC: Cardiovascular Imaging, Corrected proof: doi:10:1016/j:jcmg:2019:08:025


    نویسنده:

    Lohendran Baskaran, MBBS,a,b,c,* Gabriel Maliakal, MSC,a,* Subhi J. Al’Aref, MD,a,b Gurpreet Singh, PHD,a Zhuoran Xu, MD, MSC,a Kelly Michalak, BA,a Kristina Dolan, BA,a Umberto Gianni,a Alexander van Rosendael, MD,a Inge van den Hoogen,a Donghee Han,d Wijnand Stuijfzand,e Mohit Pandey, MSC,a Benjamin C. Lee, PHD,a Fay Lin, MD,a,b Gianluca Pontone, MD, PHD,f Paul Knaapen, MD, PHD,e Hugo Marques, MD, PHD,g Jeroen Bax, MD, PHD,h Daniel Berman, MD,d Hyuk-Jae Chang, MD, PHD,i Leslee J. Shaw, PHD,a,b James K. Min, MDa,


    چکیده انگلیسی:

    OBJECTIVES This study designed and evaluated an end-to-end deep learning solution for cardiac segmentation and quantification. BACKGROUND Segmentation of cardiac structures from coronary computed tomography angiography (CCTA) images is laborious. We designed an end-to-end deep-learning solution. METHODS Scans were obtained from multicenter registries of 166 patients who underwent clinically indicated CCTA. Left ventricular volume (LVV) and right ventricular volume (RVV), left atrial volume (LAV) and right atrial volume (RAV), and left ventricular myocardial mass (LVM) were manually annotated as ground truth. A U-Netinspired, deep-learning model was trained, validated, and tested in a 70:20:10 split. RESULTS Mean age was 61.1  8.4 years, and 49% were women. A combined overall median Dice score of 0.9246 (interquartile range: 0.8870 to 0.9475) was achieved. The median Dice scores for LVV, RVV, LAV, RAV, and LVM were 0.938 (interquartile range: 0.887 to 0.958), 0.927 (interquartile range: 0.916 to 0.946), 0.934 (interquartile range: 0.899 to 0.950), 0.915 (interquartile range: 0.890 to 0.920), and 0.920 (interquartile range: 0.811 to 0.944), respectively. Model prediction correlated and agreed well with manual annotation for LVV (r ¼ 0.98), RVV (r ¼ 0.97), LAV (r ¼ 0.78), RAV (r ¼ 0.97), and LVM (r ¼ 0.94) (p < 0.05 for all). Mean difference and limits of agreement for LVV, RVV, LAV, RAV, and LVM were 1.20 ml (95% CI: 7.12 to 9.51), 0.78 ml (95% CI: 10.08 to 8.52), 3.75 ml (95% CI: 21.53 to 14.03), 0.97 ml (95% CI: 6.14 to 8.09), and 6.41 g (95% CI: 8.71 to 21.52), respectively. CONCLUSIONS A deep-learning model rapidly segmented and quantified cardiac structures. This was done with high accuracy on a pixel level, with good agreement with manual annotation, facilitating its expansion into areas of research and clinical import. (J Am Coll Cardiol Img 2019;-:-–-) © 2019 by the American College of Cardiology Foundation.


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 9
    حجم فایل: 632 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی