دانلود مقاله انگلیسی رایگان:رویکرد یادگیری عمیق برای عملکرد پایدار WWTP: مطالعه موردی در زمینه نظارت بر شرایط تأثیرگذار محور داده - 2019
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری عمیق رایگان
  • Deep learning approach for sustainable WWTP operation: A case study on data-driven influent conditions monitoring Deep learning approach for sustainable WWTP operation: A case study on data-driven influent conditions monitoring
    Deep learning approach for sustainable WWTP operation: A case study on data-driven influent conditions monitoring

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Deep learning approach for sustainable WWTP operation: A case study on data-driven influent conditions monitoring


    ترجمه فارسی عنوان مقاله:

    رویکرد یادگیری عمیق برای عملکرد پایدار WWTP: مطالعه موردی در زمینه نظارت بر شرایط تأثیرگذار محور داده


    منبع:

    Sciencedirect - Elsevier - Sustainable Cities and Society, 50 (2019) 101670: doi:10:1016/j:scs:2019:101670


    نویسنده:

    Abdelkader Dairia, Tuoyuan Chengb, Fouzi Harrouc, Ying Sunc, TorOve Leiknesb


    چکیده انگلیسی:

    Wastewater treatment plants (WWTPs) are sustainable solutions to water scarcity. As initial conditions offered to WWTPs, influent conditions (ICs) affect treatment units states, ongoing processes mechanisms, and product qualities. Anomalies in ICs, often raised by abnormal events, need to be monitored and detected promptly to improve system resilience and provide smart environments. This paper proposed and verified data-driven anomaly detection approaches based on deep learning methods and clustering algorithms. Combining both the ability to capture temporal auto-correlation features among multivariate time series from recurrent neural networks (RNNs), and the function to delineate complex distributions from restricted Boltzmann machines (RBM), RNN-RBM models were employed and connected with various classifiers for anomaly detection. The effectiveness of RNN based, RBM based, RNN-RBM based, or standalone individual detectors, including expectation maximization clustering, K-means clustering, mean-shift clustering, one-class support vector machine (OCSVM), spectral clustering, and agglomerative clustering algorithms were evaluated by importing seven years ICs data from a coastal municipal WWTP where more than 150 abnormal events occurred. Results demonstrated that RNN-RBM-based OCSVM approach outperformed all other scenarios with an area under the curve value up to 0.98, which validated the superiority in feature extraction by RNN-RBM, and the robustness in multivariate nonlinear kernels by OCSVM. The model was flexible for not requiring assumptions on data distribution, and could be shared and transferred among environmental data scientists.
    Keywords: Wastewater treatment plant | Influent conditions monitoring | Machine learning | Unsupervised deep learning


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 9
    حجم فایل: 1385 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی