دانلود مقاله انگلیسی رایگان:یادگیری عمیق فقط با PET مغز نرمال ناهنجاریهای مغزی هدایت نشده را شناسایی می کند - 2019
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری عمیق رایگان
  • Deep learning only by normal brain PET identify unheralded brain anomalies Deep learning only by normal brain PET identify unheralded brain anomalies
    Deep learning only by normal brain PET identify unheralded brain anomalies

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Deep learning only by normal brain PET identify unheralded brain anomalies


    ترجمه فارسی عنوان مقاله:

    یادگیری عمیق فقط با PET مغز نرمال ناهنجاریهای مغزی هدایت نشده را شناسایی می کند


    منبع:

    Sciencedirect - Elsevier - EBioMedicine 43 (2019) 447–453


    نویسنده:

    Hongyoon Choi a,b,1, Seunggyun Ha b,1, Hyejin Kang b, Hyekyoung Lee b, Dong Soo Lee a,b,c,⁎, for the Alzheimers Disease Neuroimaging Initiative


    چکیده انگلیسی:

    Background: Recent deep learning models have shown remarkable accuracy for the diagnostic classification. However, they have limitations in clinical application due to the gap between the training cohorts and realworld data. We aimed to develop a model trained only by normal brain PET data with an unsupervised manner to identify an abnormality in various disorders as imaging data of the clinical routine. Methods: Using variational autoencoder, a type of unsupervised learning, Abnormality Scorewas defined as how far a given brain image is from the normal data. The model was applied to FDG PET data of Alzheimers disease (AD) andmild cognitive impairment (MCI) and clinical routine FDG PET data for assessing behavioral abnormality and seizures. Accuracy was measured by the area under curve (AUC) of receiver-operating-characteristic (ROC) curve.We investigated whether deep learning has additional benefits with experts visual interpretation to identify abnormal patterns. Findings: The AUC of the ROC curve for differentiating AD was 0.90. The changes in cognitive scores frombaseline to 2-year follow-up were significantly correlated with Abnormality Score at baseline. The AUC of the ROC curve for discriminating patients with various disorders from controls was 0.74. Experts visual interpretation was helped by the deep learning model to identify abnormal patterns in 60% of cases initially not identified without the model. Interpretation:We suggest that deep learning model trained only by normal data was applicable for identifying wide-range of abnormalities in brain diseases, even uncommon ones, proposing its possible use for interpreting real-world clinical data.
    Keywords: PET | Deep learning | Variational autoencoder | Alzheimer | Anomaly detection


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 7
    حجم فایل: 1341 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی