دانلود مقاله انگلیسی رایگان:تشخیص سرطان پوست با الگوریتم های یادگیری عمیق و آنالیز صدا: یک مطالعه بالینی آینده نگر از یک درموسکوپ ابتدایی - 2019
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری عمیق رایگان
  • Skin cancer detection by deep learning and sound analysis algorithms: A prospective clinical study of an elementary dermoscope Skin cancer detection by deep learning and sound analysis algorithms: A prospective clinical study of an elementary dermoscope
    Skin cancer detection by deep learning and sound analysis algorithms: A prospective clinical study of an elementary dermoscope

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Skin cancer detection by deep learning and sound analysis algorithms: A prospective clinical study of an elementary dermoscope


    ترجمه فارسی عنوان مقاله:

    تشخیص سرطان پوست با الگوریتم های یادگیری عمیق و آنالیز صدا: یک مطالعه بالینی آینده نگر از یک درموسکوپ ابتدایی


    منبع:

    Sciencedirect - Elsevier - EBioMedicine 43 (2019) 107–113


    نویسنده:

    A. Dascalu a,⁎, E.O. Davidb


    چکیده انگلیسی:

    Background: Skin cancer (SC), especiallymelanoma, is a growing public health burden. Experimental studies have indicated a potential diagnostic role for deep learning (DL) algorithms in identifying SC at varying sensitivities. Previously, it was demonstrated that diagnostics by dermoscopy are improved by applying an additional sonification (data to sound waves conversion) layer on DL algorithms. The aim of the study was to determine the impact of image quality on accuracy of diagnosis by sonification employing a rudimentary skin magnifier with polarized light (SMP). Methods: Dermoscopy images acquired by SMP were processed by a first deep learning algorithm and sonified. Audio output was further analyzed by a different secondary DL. Study criteria outcomes of SMP were specificity and sensitivity,which were further processed by a F2-score, i.e. applying a twice extra weight to sensitivity over positive predictive values. Findings: Patients (n=73) fulfilling inclusion criteriawere referred to biopsy. SMP analysis metrics resulted in a receiver operator characteristic curve AUCs of 0.814 (95% CI, 0.798–0.831). SMP achieved a F2-score sensitivity of 91.7%, specificity of 41.8% and positive predictive value of 57.3%.Diagnosing the sameset of patients lesions by an advanced dermoscope resulted in a F2-score sensitivity of 89.5%, specificity of 57.8% and a positive predictive value of 59.9% (P=NS). Interpretation: DL processing of dermoscopic images followed by sonification results in an accurate diagnostic output for SMP, implying that the quality of the dermoscope is not the major factor influencing DL diagnosis of skin cancer. Present system might assist all healthcare providers as a feasible computer-assisted detection system. Fund: Bostel Technologies.
    Keywords: Skin cancer | Deep learning | Dermoscopy | Sonification | Melanoma | Telemedicine | Artificial intelligence


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 7
    حجم فایل: 1371 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی