دانلود مقاله انگلیسی رایگان:ارزیابی تناسب اراضی برای پیش بینی عملکرد از این گونه گیاهان با استفاده از سیستم های خبره فازی جغرافیایی و سنجش از دور - 2019
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی سیستم های خبره رایگان
  • Land suitability assessments for yield prediction of cassava using geospatial fuzzy expert systems and remote sensing Land suitability assessments for yield prediction of cassava using geospatial fuzzy expert systems and remote sensing
    Land suitability assessments for yield prediction of cassava using geospatial fuzzy expert systems and remote sensing

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Land suitability assessments for yield prediction of cassava using geospatial fuzzy expert systems and remote sensing


    ترجمه فارسی عنوان مقاله:

    ارزیابی تناسب اراضی برای پیش بینی عملکرد از این گونه گیاهان با استفاده از سیستم های خبره فازی جغرافیایی و سنجش از دور


    منبع:

    Sciencedirect - Elsevier - Computers and Electronics in Agriculture, 166 (2019) 105018: doi:10:1016/j:compag:2019:105018


    نویسنده:

    Riska Ayu Purnamasaria, Ryozo Noguchib, Tofael Ahamedb,⁎


    چکیده انگلیسی:

    Cassava has the potential to be a promising crop that can adapt to changing climatic conditions in Indonesia due to its low water requirement and drought tolerance. However, inappropriate land selection decisions limit cassava yields and increase production-related costs to farmers. As a root crop, yield prediction using vegetation indices and biophysical properties is essential to maximize the yield of cassava before harvesting. Therefore, the purpose of this research was to develop a yield prediction model based on suitable areas that assess with land suitability analysis (LSA). For LSA, the priority indicators were identified using a fuzzy expert system combined with a multicriteria decision method including ecological categories. Furthermore, the yield prediction method was developed using satellite remote sensing datasets. In this analysis, Sentinel-2 datasets were collected and analyzed in SNAP® and ArcGIS® environments. The multisource database of ecological criteria for cassava production was built using the fuzzy membership function. The results showed that 42.17% of the land area was highly suitable for cassava production. Then, in the highly suitable area, the yield prediction model was developed using the vegetation indices based on Sentinel-2 datasets with 10m resolution for the accuracy assessment. The vegetation indices were used to predict cassava growth, biophysical condition, and phenology over the growing seasons. The NDVI, SAVI, IRECI, LAI, and fAPAR were used to develop the model for predicting cassava growth. The generated models were validated using regression analysis between observed and predicted yield. As the vegetation indices, NDVI showed higher accuracy in the yield prediction model (R2=0.62) compared to SAVI and IRECI. Meanwhile, LAI had a higher prediction accuracy (R2=0.70) than other biophysical properties, fAPAR. The combined model using NDVI, SAVI, IRECI, LAI, and fAPAR reported the highest accuracy (R2=0.77). The ground truth data were used for the evaluation of satellite remote sensing data in the comparison between the observed and predicted yields. This developed integrated model could be implemented for the management of land allocation and yield assessment in cassava production to ensure regional food security in Indonesia.
    Keywords: Land suitability | Cassava | Yield prediction | Fuzzy expert systems | Remote sensing


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 13
    حجم فایل: 4622 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی