دانلود مقاله انگلیسی رایگان:شناسايي موقعيت جهش در تمامي بخش هاي ژنوم آنفلوانزا باعث تمايز بهتر ميان سويه ها و بيماري هاي فصلي مي شود - 2019
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی سیستم های خبره رایگان
  • Identifying mutation positions in all segments of influenza genome enables better differentiation between pandemic and seasonal strains Identifying mutation positions in all segments of influenza genome enables better differentiation between pandemic and seasonal strains
    Identifying mutation positions in all segments of influenza genome enables better differentiation between pandemic and seasonal strains

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Identifying mutation positions in all segments of influenza genome enables better differentiation between pandemic and seasonal strains


    ترجمه فارسی عنوان مقاله:

    شناسايي موقعيت جهش در تمامي بخش هاي ژنوم آنفلوانزا باعث تمايز بهتر ميان سويه ها و بيماري هاي فصلي مي شود


    منبع:

    Sciencedirect - Elsevier - Gene, 697 (2019) 78-85: doi:10:1016/j:gene:2019:01:014


    نویسنده:

    Fatemeh Kargarfarda,b, Ashkan Samib, Farhid Hemmatzadehc, Esmaeil Ebrahimiec,d,e,f,⁎


    چکیده انگلیسی:

    Influenza has a negative sense, single-stranded, and segmented RNA. In the context of pandemic influenza research, most studies have focused on variations in the surface proteins (Hemagglutinin and Neuraminidase). However, new findings suggest that all internal and external proteins of influenza viruses can contribute in pandemic emergence, pathogenicity and increasing host range. The occurrence of the 2009 influenza pandemic and the availability of many external and internal segments of pandemic and non-pandemic sequences offer a unique opportunity to evaluate the performance of machine learning models in discrimination of pandemic from seasonal sequences using mutation positions in all segments. In this study, we hypothesized that identifying mutation positions in all segments (proteins) encoded by the influenza genome would enable pandemic and seasonal strains to be more reliably distinguished. In a large scale study, we applied a range of data mining techniques to all segments of influenza for rule discovery and discrimination of pandemic from seasonal strains. CBA (classification based on association rule mining), Ripper and Decision tree algorithms were utilized to extract association rules among mutations. CBA outperformed the other models. Our approach could discriminate pandemic sequences from seasonal ones with more than 95% accuracy for PA and NP, 99.33% accuracy for NA and 100% accuracy, precision, specificity and sensitivity (recall) for M1, M2, PB1, NS1, and NS2. The values of precision, specificity, and sensitivity were more than 90% for other segments except PB2. If sequences of all segments of one strain were available, the accuracy of discrimination of pandemic strains was 100%. General rules extracted by rule base classification approaches, such as M1-V147I, NP-N334H, NS1-V112I, and PB1-L364I, were able to detect pandemic sequences with high accuracy. We observed that mutations on internal proteins of influenza can contribute in distinguishing the pandemic viruses, similar to the external ones.
    Keywords: Association rule mining | CBA | Expert system | Hot spots | Ripper algorithm | Pandemic influenza


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 8
    حجم فایل: 1039 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی