دانلود مقاله انگلیسی رایگان:تجزیه و تحلیل استحکام الگوریتم های فیلتر چند معیاره مشترک در برابر حملات شیلینگ - 2019
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی سیستم های خبره رایگان
  • Robustness analysis of multi-criteria collaborative filtering algorithms against shilling attacks Robustness analysis of multi-criteria collaborative filtering algorithms against shilling attacks
    Robustness analysis of multi-criteria collaborative filtering algorithms against shilling attacks

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Robustness analysis of multi-criteria collaborative filtering algorithms against shilling attacks


    ترجمه فارسی عنوان مقاله:

    تجزیه و تحلیل استحکام الگوریتم های فیلتر چند معیاره مشترک در برابر حملات شیلینگ


    منبع:

    Sciencedirect - Elsevier - Expert Systems With Applications, 115 (2018) 386-402: doi:10:1016/j:eswa:2018:08:001


    نویسنده:

    Ahmet Murat Turk, Alper Bilge


    چکیده انگلیسی:

    Collaborative filtering is an emerging recommender system technique that aims guiding users based on other customers preferences with behavioral similarities. Such correspondences are located based on pref- erence history of users. A relatively new extension of traditional collaborative filtering schemes takes into account not only how much a user likes an item, but also why she likes the item by collecting multi-criteria preferences focusing on distinctive features of the items. These multi-criteria collaborative filtering systems have the potential to improve recommender system accuracy since they reveal multi- ple views of users on products. However, due to providing more insightful recommendations, such sys- tems might be subjected to malicious attacks more substantially than the traditional ones. Attackers at- tempt to insert fake profiles to bias outputs of these systems in favor of a particular product or disrepute the system itself. Since outputs of expert systems directly dependent on input signals; interventions to the inputs coherently cause failures on productions of such systems. In this study, we examine shilling attack strategies against multi-criteria preference collections, how to extend well-known attack scenar- ios against these systems, and propose an alternative attacking scheme. We analyze the robustness of baseline multi-criteria recommendation algorithms regarding various similarity aggregation procedures against proposed attacking schemes by the extensive experimental investigation. Empirical results on real-world data demonstrate that these systems are highly vulnerable to manipulations and proper attack detection practices are needed to ensure recommendation quality. According to our findings, manipulative attempts at such expert systems mislead decision-making process.
    Keywords: Collaborative filtering | Multi-criteria | Shilling attack | Profile injection | Robustness analysis | Mode attack


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 17
    حجم فایل: 1209 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی