دانلود مقاله انگلیسی رایگان:جستجوی پراکنده افزایش یافته مشارکتی با طرح یادگیری مبتنی بر مخالفت برای تخمین پارامتر در مدل های جنبشی ابعادی بالا از سیستم های بیولوژیکی - 2019
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی سیستم های خبره رایگان
  • Cooperative enhanced scatter search with opposition-based learning schemes for parameter estimation in high dimensional kinetic models of biological systems Cooperative enhanced scatter search with opposition-based learning schemes for parameter estimation in high dimensional kinetic models of biological systems
    Cooperative enhanced scatter search with opposition-based learning schemes for parameter estimation in high dimensional kinetic models of biological systems

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Cooperative enhanced scatter search with opposition-based learning schemes for parameter estimation in high dimensional kinetic models of biological systems


    ترجمه فارسی عنوان مقاله:

    جستجوی پراکنده افزایش یافته مشارکتی با طرح یادگیری مبتنی بر مخالفت برای تخمین پارامتر در مدل های جنبشی ابعادی بالا از سیستم های بیولوژیکی


    منبع:

    Sciencedirect - Elsevier - Expert Systems With Applications, 116 (2019) 131-146: doi:10:1016/j:eswa:2018:09:020


    نویسنده:

    Muhammad Akmal Remli a , Mohd Saberi Mohamad b , c , ∗, Safaai Deris b , c , Azurah A Samah d , Sigeru Omatu e , Juan Manuel Corchado


    چکیده انگلیسی:

    Industrial bioprocesses development nowadays is concerned with producing chemicals using yeast, bac- teria and therapeutic proteins in mammalian cells. This involves the utilization of microorganism cells as factories and re-engineering them in silico . The tools that could facilitate this process are known as the ki- netic models. Kinetic models of cellular metabolism are important in assisting researchers to understand the rational design of biological systems, predicting metabolites production, and improving bio-products development. However, the most challenging task in model development is parameter estimation, which is the process of identifying an unknown value of model parameters which provides the best fit between the model output and a set of experimental data. Due to the increased complexity and high dimension- ality of the models, which are extremely nonlinear and contain large numbers of kinetic parameters, parameter estimation is known to be difficult and time-consuming. This study proposes a cooperative enhanced scatter search with opposition-based learning schemes (CeSSOL) for parameter estimation in large-scale biology models. The method was executed in parallel with the proposed cooperative mecha- nism in order to exchange information (kinetic parameters) between individual threads. Each thread con- sists of different parameters settings that enhance the systemic properties in obtaining the global min- imum. The performance of the proposed method was assessed against two large-scale microorganisms models using mammalian and bacteria cells. The results revealed that the proposed method recorded faster computation time compared to other methods. The study has also demonstrated that the proposed method can be used to provide more accurate and faster estimation of kinetic models, indicating the potential benefits of utilizing this method for expert systems of industrial biotechnology.
    Keywords: Parameter estimation | Metabolic engineering | Kinetic model | Opposition-based learning | Global optimization | Cooperative metaheuristic


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 16
    حجم فایل: 1464 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی