دانلود مقاله انگلیسی رایگان:زمانبندی ترافیک هوشمند هدایت شده تئوری صف از طریق تجزیه و تحلیل ویدئو با استفاده از مدل فرایند Dirichlet مخلوط - 2019
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی سیستم های خبره رایگان
  • Queuing theory guided intelligent traffic scheduling through video analysis using Dirichlet process mixture model Queuing theory guided intelligent traffic scheduling through video analysis using Dirichlet process mixture model
    Queuing theory guided intelligent traffic scheduling through video analysis using Dirichlet process mixture model

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Queuing theory guided intelligent traffic scheduling through video analysis using Dirichlet process mixture model


    ترجمه فارسی عنوان مقاله:

    زمانبندی ترافیک هوشمند هدایت شده تئوری صف از طریق تجزیه و تحلیل ویدئو با استفاده از مدل فرایند Dirichlet مخلوط


    منبع:

    Sciencedirect - Elsevier - Expert Systems With Applications, 118 (2019) 169-181: doi:10:1016/j:eswa:2018:09:057


    نویسنده:

    Santhosh Kelathodi Kumaran a , ∗, Debi Prosad Dogra a , Partha Pratim Roy b


    چکیده انگلیسی:

    Intelligent traffic signaling is an important part of city road traffic management systems. In many coun- tries, it is done through supervised/semi-supervised ways. With the advances in computer vision and machine learning, it is now possible to develop expert systems guided intelligent traffic signaling sys- tems that are unsupervised in nature. In order to schedule traffic signals, it is essential to learn the traf- fic characterization parameters such as the number of vehicles, their arrival and departure rates, etc. In this work, we use unsupervised machine learning with the help of a modified Dirichlet Process Mixture Model (DPMM) to measure the aforementioned traffic parameters. This has been done using a new fea- ture, named temporal clusters or tracklets extracted using DPMM. Detailed analysis on tracklet behavior during signal on/offperiod has been carried out to derive a queuing theory-based method for signal du- ration prediction. The queuing behavior at a junction is analyzed using tracklets for understanding their applicability. Queue clearance time at the junction has been used for predicting the signal duration with the help of Gaussian regression of historical data. Two publicly available video datasets, namely QMUL and MIT have been used for verification of the hypothesis. The mean absolute error (MAE) of the proposed method using tracklets has been reduced by a factor of 2.4 and 6.3 when compared with the tracks generated using Kernel Correlation Filters (KCF) and Kanade–Lucas–Tomasi (KLT), respectively. Through experiments, we are also able to establish that KCF and KLT tracks do not consider spatial occupancy of the vehicles on roads, leading to error in the estimation. The results reveal that the proposed queuing theory-based approach predicts the signal duration for the next cycle more accurately as compared to the ground truths. The method can be used for building intelligent traffic control systems for roadway junctions in cities and highways.
    Keywords: Traffic intersection management | Signal duration | prediction Dirichlet process | Queuing theory | Unsupervised learning | Visual surveillance


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 13
    حجم فایل: 2985 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی