دانلود مقاله انگلیسی رایگان:پیش بینی زمان سفر با اتوبوس چند خروجی با شبکه عصبی LSTM حلقوی - 2019
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی سیستم های خبره رایگان
  • Multi-output bus travel time prediction with convolutional LSTM neural network Multi-output bus travel time prediction with convolutional LSTM neural network
    Multi-output bus travel time prediction with convolutional LSTM neural network

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Multi-output bus travel time prediction with convolutional LSTM neural network


    ترجمه فارسی عنوان مقاله:

    پیش بینی زمان سفر با اتوبوس چند خروجی با شبکه عصبی LSTM حلقوی


    منبع:

    Sciencedirect - Elsevier - Expert Systems With Applications, 120 (2019) 426-435: doi:10:1016/j:eswa:2018:11:028


    نویسنده:

    Niklas Christoffer Petersen a , b , ∗, Filipe Rodrigues b , Francisco Camara Pereirab


    چکیده انگلیسی:

    Accurate and reliable travel time predictions in public transport networks are essential for delivering an attractive service that is able to compete with other modes of transport in urban areas. The traditional application of this information, where arrival and departure predictions are displayed on digital boards, is highly visible in the city landscape of most modern metropolises. More recently, the same information has become critical as input for smart-phone trip planners in order to alert passengers about unreachable connections, alternative route choices and prolonged travel times. More sophisticated Intelligent Transport Systems (ITS) include the predictions of connection assurance, i.e. an expert system that will decide to hold services to enable passenger exchange, in case one of the services is delayed up to a certain level. In order to operate such systems, and to ensure the confidence of passengers in the systems, the infor- mation provided must be accurate and reliable. Traditional methods have trouble with this as congestion, and thus travel time variability, increases in cities, consequently making travel time predictions in urban areas a non-trivial task. This paper presents a system for bus travel time prediction that leverages the non-static spatio-temporal correlations present in urban bus networks, allowing the discovery of com- plex patterns not captured by traditional methods. The underlying model is a multi-output, multi-time- step, deep neural network that uses a combination of convolutional and long short-term memory (LSTM) layers. The method is empirically evaluated and compared to other popular approaches for link travel time prediction and currently available services, including the currently deployed model at Movia, the regional public transport authority in Greater Copenhagen. We find that the proposed model significantly outper- forms all the other methods we compare with, and is able to detect small irregular peaks in bus travel times very quickly.
    Keywords: Bus travel time prediction | Intelligent Transport Systems | Convolutional neural network (CNN) | Long short-term memory (LSTM) | Deep learning


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 10
    حجم فایل: 882 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی