دانلود مقاله انگلیسی رایگان:یک راه حل برای بازسازی اسناد متنی خرد شده برش خورده بر اساس الگوریتم بذر محدود K-means و الگوریتم کلونی مورچه ها - 2019
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی سیستم های خبره رایگان
  • A solution to reconstruct cross-cut shredded text documents based on constrained seed K-means algorithm and ant colony algorithm A solution to reconstruct cross-cut shredded text documents based on constrained seed K-means algorithm and ant colony algorithm
    A solution to reconstruct cross-cut shredded text documents based on constrained seed K-means algorithm and ant colony algorithm

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    A solution to reconstruct cross-cut shredded text documents based on constrained seed K-means algorithm and ant colony algorithm


    ترجمه فارسی عنوان مقاله:

    یک راه حل برای بازسازی اسناد متنی خرد شده برش خورده بر اساس الگوریتم بذر محدود K-means و الگوریتم کلونی مورچه ها


    منبع:

    Sciencedirect - Elsevier - Expert Systems With Applications, 127 (2019) 35-46: doi:10:1016/j:eswa:2019:02:039


    نویسنده:

    Junhua Chen, Miao Tian, Xingming Qi, Wenxing Wang, Youjun Liu


    چکیده انگلیسی:

    The reconstruction of cross-cut shredded text documents (RCCSTD) is an important problem in forensics and is a real, complex and notable issue for information security and judicial investigations. It can be considered a special kind of greedy square jigsaw puzzle and has attracted the attention of many re- searchers. Clustering fragments into several rows is a crucial and difficult step in RCCSTD. However, exist- ing approaches achieve low clustering accuracy. This paper therefore proposes a new clustering algorithm based on horizontal projection and a constrained seed K-means algorithm to improve the clustering ac- curacy. The constrained seed K-means algorithm draws upon expert knowledge and has the following characteristics: 1) the first fragment in each row is easy to distinguish and the unidimensional signals that are extracted from the first fragment can be used as the initial clustering center; 2) two or more prior fragments cannot be clustered together. To improve the splicing accuracy in the rows, a penalty coefficient is added to a traditional cost function. Experiments were carried out on 10 text documents. The accuracy of the clustering algorithm was 99.1% and the overall splicing accuracy was 91.0%, according to our measurements. The algorithm was compared with two other approaches and was found to offer significantly improved performance in terms of clustering accuracy. Our approach obtained the best re- sults of RCCSTD problem based on our experiment results. Moreover, a more complex and real problem –reconstruction of cross-cut shredded dual text documents (RCCSDTD) problem –was tried to solve. The satisfactory results for RCCSDTD problems in some cases were obtained, to authors’ best knowledge, our method is the first feasible approach for RCCSDTD problem. On the other hand, the developed system is fundamentally an expert system that is being specifically applied to solve RCCSTD problems.
    Keywords: Reconstruction of cross-cut shredded | documents (RCCSTD) | Constrained seed K-means algorithm | Horizontal projection | Penalty coefficient | Ant colony algorithm


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 12
    حجم فایل: 5081 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی