دانلود مقاله انگلیسی رایگان:الگوریتم تکامل تفاضلی سلسله مراتبی همراه با عمل چند تقابلی - 2019
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی سیستم های خبره رایگان
  • Hierarchical differential evolution algorithm combined with multi-cross operation Hierarchical differential evolution algorithm combined with multi-cross operation
    Hierarchical differential evolution algorithm combined with multi-cross operation

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Hierarchical differential evolution algorithm combined with multi-cross operation


    ترجمه فارسی عنوان مقاله:

    الگوریتم تکامل تفاضلی سلسله مراتبی همراه با عمل چند تقابلی


    منبع:

    Sciencedirect - Elsevier - Expert Systems With Applications, 130 (2019) 276-292: doi:10:1016/j:eswa:2019:04:040


    نویسنده:

    Zhao-Guang Liu a , ∗, Xiu-Hua Ji a , Yang Yang b


    چکیده انگلیسی:

    In expert systems, complex optimization problems are always characterized by nonlinearity, nonconvex- ity, multi-modality, discontinuity, and high dimensionality. Although classical optimization algorithms are mature, they readily fall into a local optimum. The differential evolution (DE) algorithm has been suc- cessfully applied to solve numerous problems with expert systems. However, balancing the global and local search capabilities of the DE algorithm remains an open issue and has attracted significant research attention. Thus, a hierarchical heterogeneous DE algorithm that incorporates multi-cross operation (MCO) is proposed in this article. In the proposed algorithm, success-history-based adaptive DE (SHADE) is im- plemented in the bottom layer, while MCO is implemented in the top layer. The MCO search is based on the SHADE results, but its search results do not affect the bottom layer. First-order stability analyses con- ducted for the presented MCO showed that the individual positions are expected to converge at a fixed point in the search space. The accuracy and convergence speed of the proposed algorithm were also ex- perimentally compared with those of eight other advanced particle swarm optimization techniques and DE variants using benchmark functions from CEC2017. The proposed algorithm yielded better solution ac- curacy for 30- and 50-dimensional problems than the other variants, and although it did not provide the fastest convergence for all of the functions, it ranked among the top three for the unimodal and simple multimodal functions and achieved fast convergence for the other functions.
    Keywords: Differential evolution | Particle swarm optimization | Hierarchical structure | Multi-cross operation


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 17
    حجم فایل: 1279 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی