دانلود مقاله انگلیسی رایگان:کارایی رگرسیون ریج بر پایه ELM از طریق پارامترهای تنظیم - 2019
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی سیستم های خبره رایگان
  • The performance of ELM based ridge regression via the regularization parameters The performance of ELM based ridge regression via the regularization parameters
    The performance of ELM based ridge regression via the regularization parameters

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    The performance of ELM based ridge regression via the regularization parameters


    ترجمه فارسی عنوان مقاله:

    کارایی رگرسیون ریج بر پایه ELM از طریق پارامترهای تنظیم


    منبع:

    Sciencedirect - Elsevier - Expert Systems With Applications, 134 (2019) 225-233: doi:10:1016/j:eswa:2019:05:039


    نویسنده:

    Hasan Yildirim a , ∗, M. Revan Özkale b


    چکیده انگلیسی:

    The extreme learning machine (ELM) which is a single layer feedforward neural network provides ex- tremely fast training speed and good generalization performance. The ELM however, has its respective drawback: it is known to be sensitive to the ill-conditioned data. To overcome the ill-conditioning prob- lem in ELM, ELM based on ridge regression (RR-ELM) was proposed. Since RR-ELM is a biased method, ELM based on almost unbiased ridge regression (AUR-ELM) was accordingly proposed to reduce the bias in a certain extent. RR-ELM and AUR-ELM introduced in the existence of multicollinearity, depend on the regularization parameter. The regularization parameter affects the performance of both RR-ELM and AUR- ELM. There is no consensus on the selection of the regularization parameter. Although there are various methods in linear regression to select the regularization parameter, only one method based on the selec- tion minimizing the mean squared error was used in RR-ELM. In this study, AIC, BIC and CV criteria in the context of RR-ELM and AUR-ELM were proposed as alternative methods for the selection of the regular- ization parameter. An experimental study was conducted on eight data sets which are widely known and used in machine learning studies. The analyzes are considered as purposive for regression studies which are the most important fields of expert systems and machine learning. The results obtained demonstrate that the selection method of the regularization parameter is significantly effective on both the general- ization and particularly stability performance of RR-ELM and AUR-ELM when compared to ELM
    Keywords: Extreme learning machine | Ridge regression | Almost unbiased ridge regression | Regularized extreme learning machine | Model selection


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 9
    حجم فایل: 634 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی