دانلود مقاله انگلیسی رایگان:تولید جمعیت اولیه در انتخاب زیر مجموعه ویژگی - 2019
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی سیستم های خبره رایگان
  • On initial population generation in feature subset selection On initial population generation in feature subset selection
    On initial population generation in feature subset selection

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    On initial population generation in feature subset selection


    ترجمه فارسی عنوان مقاله:

    تولید جمعیت اولیه در انتخاب زیر مجموعه ویژگی


    منبع:

    Sciencedirect - Elsevier - Expert Systems With Applications, 137 (2019) 11-21: doi:10:1016/j:eswa:2019:06:063


    نویسنده:

    Ayça Deniz a , Hakan Ezgi Kiziloz b , ∗


    چکیده انگلیسی:

    Performance of evolutionary algorithms depends on many factors such as population size, number of generations, crossover or mutation probability, etc. Generating the initial population is one of the impor- tant steps in evolutionary algorithms. A poor initial population may unnecessarily increase the number of searches or it may cause the algorithm to converge at local optima. In this study, we aim to find a promis- ing method for generating the initial population, in the Feature Subset Selection (FSS) domain. FSS is not considered as an expert system by itself, yet it constitutes a significant step in many expert systems. It eliminates redundancy in data, which decreases training time and improves solution quality. To achieve our goal, we compare a total of five different initial population generation methods; Information Gain Ranking (IGR), greedy approach and three types of random approaches. We evaluate these methods using a specialized Teaching Learning Based Optimization searching algorithm (MTLBO-MD), and three super- vised learning classifiers: Logistic Regression, Support Vector Machines, and Extreme Learning Machine. In our experiments, we employ 12 publicly available datasets, mostly obtained from the well-known UCI Machine Learning Repository. According to their feature sizes and instance counts, we manually classify these datasets as small, medium, or large-sized. Experimental results indicate that all tested methods achieve similar solutions on small-sized datasets. For medium-sized and large-sized datasets, however, the IGR method provides a better starting point in terms of execution time and learning performance. Finally, when compared with other studies in literature, the IGR method proves to be a viable option for initial population generation.
    Keywords: Feature subset selection | Initial population | Multiobjective optimization


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 11
    حجم فایل: 693 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی