دانلود مقاله انگلیسی رایگان:ترکیب روشهای خوشه بندی سلسله مراتبی با استفاده از روش PCA - 2019
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی سیستم های خبره رایگان
  • Combining hierarchical clustering approaches using the PCA method Combining hierarchical clustering approaches using the PCA method
    Combining hierarchical clustering approaches using the PCA method

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Combining hierarchical clustering approaches using the PCA method


    ترجمه فارسی عنوان مقاله:

    ترکیب روشهای خوشه بندی سلسله مراتبی با استفاده از روش PCA


    منبع:

    Sciencedirect - Elsevier - Expert Systems With Applications, 137 (2019) 1-10: doi:10:1016/j:eswa:2019:06:064


    نویسنده:

    Mohammad Jafarzadegan a , b , Faramarz Safi-Esfahani a , b , ∗, Zahra Beheshti a , b


    چکیده انگلیسی:

    In expert systems, data mining methods are algorithms that simulate humans’ problem-solving capabil- ities. Clustering methods as unsupervised machine learning methods are crucial approaches to catego- rize similar samples in the same categories. The use of different clustering algorithms to a given dataset produces clusters with different qualities. Hence, many researchers have applied clustering combination methods to reduce the risk of choosing an inappropriate clustering algorithm. In these methods, the out- puts of several clustering algorithms are combined. In these research works, the input hierarchical clus- terings are transformed to descriptor matrices and their combination is achieved by aggregating their descriptor matrices. In previous works, only element-wise aggregation operators have been used and the relation between the elements of each descriptor matrix has been ignored. However, the value of each element of the descriptor matrix is meaningful in comparison with its other elements. The current study proposes a novel method of combining hierarchical clustering approaches based on principle component analysis (PCA). PCA as an aggregator allows considering all elements of the descriptor matrices. In the proposed approach, basic clusters are made and transformed to descriptor matrices. Then, a final ma- trix is extracted from the descriptor matrices using PCA. Next, a final dendrogram is constructed from the matrix that is used to summarize the results of the diverse clustering. The experimental results on popular available datasets show the superiority of the clustering accuracy of the proposed method over basic clustering methods such as single, average and centroid linkage and previously combined hierar- chical clustering methods. In addition, statistical tests show that the proposed method significantly out- performed hierarchical clustering combination methods with element-wise averaging operators in almost all tested datasets. Several experiments have also been conducted which confirm the robustness of the proposed method for its parameter setting.
    Keywords: Clustering | Hierarchical clustering | Principle component analysis | PCA


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 10
    حجم فایل: 871 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی