دانلود مقاله انگلیسی رایگان:تکنیک های مربوط به سیستم انتخاب ویژگی Tanimoto و ترکیبی از خوشه بندی و افزایش طبقه بندی گروه از داده های بزرگ از راه دور برای پیش بینی آب و هوا - 2020
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی داده های بزرگ رایگان
  • Techniques Tanimoto correlated feature selection system and hybridization of clustering and boosting ensemble classification of remote sensed big data for weather forecasting Techniques Tanimoto correlated feature selection system and hybridization of clustering and boosting ensemble classification of remote sensed big data for weather forecasting
    Techniques Tanimoto correlated feature selection system and hybridization of clustering and boosting ensemble classification of remote sensed big data for weather forecasting

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Techniques Tanimoto correlated feature selection system and hybridization of clustering and boosting ensemble classification of remote sensed big data for weather forecasting


    ترجمه فارسی عنوان مقاله:

    تکنیک های مربوط به سیستم انتخاب ویژگی Tanimoto و ترکیبی از خوشه بندی و افزایش طبقه بندی گروه از داده های بزرگ از راه دور برای پیش بینی آب و هوا


    منبع:

    Sciencedirect - Elsevier - Computer Communications, 151 (2020) 266-274: doi:10:1016/j:comcom:2019:12:063


    نویسنده:

    Pooja S.B. a,∗, R.V. Siva Balan b, Anisha M. c, M.S. Muthukumaran d, Jothikumar R. e


    چکیده انگلیسی:

    Weather forecasting has been done using various techniques but still not efficient for handling the big remote sensed data since the data comprises the more features. Hence the techniques degrade the forecasting accuracy and take more prediction time. To enhance the prediction accuracy (PA) with minimal time, Tanimoto Correlation based Combinatorial MAP Expected Clustering and Linear Program Boosting Classification (TCCMECLPBC) Technique is proposed. At first, the data and features are gathered from big weather database. After that, relevant features are selected through finding the similarity between the features. Tanimoto Correlation Coefficient is used to find the similarity between the features for selecting the relevant features with higher feature selection accuracy. After selecting the relevant features, MAP expected clustering process is carried out to group the weather data for cluster formation. In this process, a number of cluster and cluster centroids are initialized. In this clustering process, it includes two steps namely expectation (E) and maximization (M) to discover maximum probability for grouping data into the cluster. After that, the clustering result is given to Linear Program boosting classifier to improve the prediction performance. In this classification, the weak classifier results are boosted to create strong classifier. The results evident that the TC-CMECLPBC technique enhance the PA with lesser time and false positive rate (FPR) than the conventional methods.
    Keywords: Big data | Tanimoto correlation | MAP expected | Boosting classification | Expectation | Maximization | Similarity | Clustering | Cluster centroids | Strong classifier | Weak classifier


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 9
    حجم فایل: 1026 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi