دانلود مقاله انگلیسی رایگان:زبان های برنامه نویسی برای برنامه های HPC با داده های فشرده: یک مطالعه نگاشت منظم - 2020
بلافاصله پس از پرداخت دانلود کنید 2
دانلود مقاله انگلیسی داده های بزرگ رایگان
  • Programming languages for data-Intensive HPC applications: A systematic mapping study Programming languages for data-Intensive HPC applications: A systematic mapping study
    Programming languages for data-Intensive HPC applications: A systematic mapping study

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Programming languages for data-Intensive HPC applications: A systematic mapping study


    ترجمه فارسی عنوان مقاله:

    زبان های برنامه نویسی برای برنامه های HPC با داده های فشرده: یک مطالعه نگاشت منظم


    منبع:

    Sciencedirect - Elsevier - Parallel Computing, 91 (2020) 102584: doi:10:1016/j:parco:2019:102584


    نویسنده:

    Vasco Amaral a , ∗, Beatriz Norberto a , Miguel Goulão a , Marco Aldinucci b , Siegfried Benkner c , Andrea Bracciali d , Paulo Carreira e , Edgars Celms f , Luís Correia g , Clemens Grelck h , Helen Karatza i , Christoph Kessler j , Peter Kilpatrick k , Hugo Martiniano g , Ilias Mavridis i , Sabri Pllana l , Ana Respício m , JoséSimão n , Luís Veiga e , Ari Visa o


    چکیده انگلیسی:

    A major challenge in modelling and simulation is the need to combine expertise in both software tech- nologies and a given scientific domain. When High-Performance Computing (HPC) is required to solve a scientific problem, software development becomes a problematic issue. Considering the complexity of the software for HPC, it is useful to identify programming languages that can be used to alleviate this issue. Because the existing literature on the topic of HPC is very dispersed, we performed a Systematic Mapping Study (SMS) in the context of the European COST Action cHiPSet. This literature study maps character- istics of various programming languages for data-intensive HPC applications, including category, typical user profiles, effectiveness, and type of articles. We organised the SMS in two phases. In the first phase, relevant articles are identified employing an automated keyword-based search in eight digital libraries. This lead to an initial sample of 420 papers, which was then narrowed down in a second phase by human inspection of article abstracts, titles and keywords to 152 relevant articles published in the period 2006–2018. The analysis of these articles en- abled us to identify 26 programming languages referred to in 33 of relevant articles. We compared the outcome of the mapping study with results of our questionnaire-based survey that involved 57 HPC ex- perts. The mapping study and the survey revealed that the desired features of programming languages for data-intensive HPC applications are portability, performance and usability. Furthermore, we observed that the majority of the programming languages used in the context of data-intensive HPC applications are text-based general-purpose programming languages. Typically these have a steep learning curve, which makes them difficult to adopt. We believe that the outcome of this study will inspire future research and development in programming languages for data-intensive HPC applications.
    Keywords: High performance computing (HPC) | Big data | Data-intensive applications | Programming languages | Domain-Specific language (DSL) | General-Purpose language (GPL) | Systematic mapping study (SMS)


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 17
    حجم فایل: 2025 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi