دانلود مقاله انگلیسی رایگان:چارچوبی برای استخراج مناطق عملکردی شهری بر اساس تعبیه چند کلمه نمونه اولیه با استفاده از داده های مورد علاقه - 2020
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی مدیریت شهری رایگان
  • A framework for extracting urban functional regions based on multi prototype word embeddings using points-of-interest data A framework for extracting urban functional regions based on multi prototype word embeddings using points-of-interest data
    A framework for extracting urban functional regions based on multi prototype word embeddings using points-of-interest data

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    A framework for extracting urban functional regions based on multi prototype word embeddings using points-of-interest data


    ترجمه فارسی عنوان مقاله:

    چارچوبی برای استخراج مناطق عملکردی شهری بر اساس تعبیه چند کلمه نمونه اولیه با استفاده از داده های مورد علاقه


    منبع:

    Sciencedirect - Elsevier - Computers, Environment and Urban Systems, 80 (2020) 101442: doi:10:1016/j:compenvurbsys:2019:101442


    نویسنده:

    Sheng Hua, Zhanjun Hea,b, Liang Wua,b,⁎, Li Yinc, Yongyang Xua, Haifu Cuia


    چکیده انگلیسی:

    Many studies are in an effort to explore urban spatial structure, and urban functional regions have become the subject of increasing attention among planners, engineers and public officials. Attempts have been made to identify urban functional regions using high spatial resolution (HSR) remote sensing images and extensive geodata. However, the research scale and throughput have also been limited by the accessibility of HSR remote sensing data. Recently, big geo-data are becoming increasingly popular for urban studies since research is still accessible and objective with regard to the use of these data. This study aims to build a novel framework to provide an alternative solution for sensing urban spatial structure and discovering urban functional regions based on emerging geo-data – points of interest (POIs) data and an embedding learning method in the natural language processing (NLP) field. We started by constructing the intraurban functional corpus using a centercontext pairs-based approach. A word embeddings representation model for training that corpus was used to extract multiprototype vectors in the second step, and the last step aggregated the functional parcels based on an introduced spatial clustering method, hierarchical density-based spatial clustering of applications with noise (HDBSCAN). The clustering results suggested that our proposed framework used in this study is capable of discovering the utilization of urban space with a reasonable level of accuracy. The limitation and potential improvement of the proposed framework are also discussed.
    Keywords: Urban functional regions | Word embeddings | Points-of-interest | Spatial clusters


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 15
    حجم فایل: 4478 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi