دانلود مقاله انگلیسی رایگان:مدل سازی توربین های بادی با استفاده از یادگیری ماشین - 2020
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی داده های بزرگ رایگان
  • Wake modeling of wind turbines using machine learning Wake modeling of wind turbines using machine learning
    Wake modeling of wind turbines using machine learning

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Wake modeling of wind turbines using machine learning


    ترجمه فارسی عنوان مقاله:

    مدل سازی توربین های بادی با استفاده از یادگیری ماشین


    منبع:

    Sciencedirect - Elsevier - Applied Energy, 257 (2020) 114025: doi:10:1016/j:apenergy:2019:114025


    نویسنده:

    Zilong Tia, Xiao Wei Denga,⁎, Hongxing Yangb


    چکیده انگلیسی:

    In the paper, a novel framework that employs the machine learning and CFD (computational fluid dynamics) simulation to develop new wake velocity and turbulence models with high accuracy and good efficiency is proposed to improve the turbine wake predictions. An ANN (artificial neural network) model based on the backpropagation (BP) algorithm is designed to build the underlying spatial relationship between the inflow conditions and the three-dimensional wake flows. To save the computational cost, a reduced-order turbine model ADM-R (actuator disk model with rotation), is incorporated into RANS (Reynolds-averaged Navier-Stokes equations) simulations coupled with a modified k − ε turbulence model to provide big datasets of wake flow for training, testing, and validation of the ANN model. The numerical framework of RANS/ADM-R simulations is validated by a standalone Vestas V80 2MW wind turbine and NTNU wind tunnel test of double aligned turbines. In the ANN-based wake model, the inflow wind speed and turbulence intensity at hub height are selected as input variables, while the spatial velocity deficit and added turbulence kinetic energy (TKE) in wake field are taken as output variables. The ANN-based wake model is first deployed to a standalone turbine, and then the spatial wake characteristics and power generation of an aligned 8-turbine row as representation of Horns Rev wind farm are also validated against Large Eddy Simulations (LES) and field measurement. The results of ANNbased wake model show good agreement with the numerical simulations and measurement data, indicating that the ANN is capable of establishing the complex spatial relationship between inflow conditions and the wake flows. The machine learning techniques can remarkably improve the accuracy and efficiency of wake predictions.
    Keywords: Wind turbine wake | Wake model | Artificial neural network (ANN) | Machine learning | ADM-R (actuator-disk model with rotation) | model | Computational fluid dynamics (CFD)


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 17
    حجم فایل: 4564 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi