دانلود مقاله انگلیسی رایگان:به سمت یک چارچوب پردازش در زمان واقعی بر اساس بهبود انواع شبکه عصبی مکرر توزیع شده با fastText برای تجزیه و تحلیل داده های بزرگ اجتماعی - 2020
دانلود بهترین مقالات isi همراه با ترجمه فارسی 2
دانلود مقاله انگلیسی داده های بزرگ رایگان
  • Towards a real-time processing framework based on improved distributed recurrent neural network variants with fastText for social big data analytics Towards a real-time processing framework based on improved distributed recurrent neural network variants with fastText for social big data analytics
    Towards a real-time processing framework based on improved distributed recurrent neural network variants with fastText for social big data analytics

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Towards a real-time processing framework based on improved distributed recurrent neural network variants with fastText for social big data analytics


    ترجمه فارسی عنوان مقاله:

    به سمت یک چارچوب پردازش در زمان واقعی بر اساس بهبود انواع شبکه عصبی مکرر توزیع شده با fastText برای تجزیه و تحلیل داده های بزرگ اجتماعی


    منبع:

    Sciencedirect - Elsevier - Information Processing and Management, 57 (2020) 102122: doi:10:1016/j:ipm:2019:102122


    نویسنده:

    Badr Ait Hammou⁎,a, Ayoub Ait Lahcena,b, Salma Moulinea


    چکیده انگلیسی:

    Big data generated by social media stands for a valuable source of information, which offers an excellent opportunity to mine valuable insights. Particularly, User-generated contents such as reviews, recommendations, and users’ behavior data are useful for supporting several marketing activities of many companies. Knowing what users are saying about the products they bought or the services they used through reviews in social media represents a key factor for making decisions. Sentiment analysis is one of the fundamental tasks in Natural Language Processing. Although deep learning for sentiment analysis has achieved great success and allowed several firms to analyze and extract relevant information from their textual data, but as the volume of data grows, a model that runs in a traditional environment cannot be effective, which implies the importance of efficient distributed deep learning models for social Big Data analytics. Besides, it is known that social media analysis is a complex process, which involves a set of complex tasks. Therefore, it is important to address the challenges and issues of social big data analytics and enhance the performance of deep learning techniques in terms of classification accuracy to obtain better decisions. In this paper, we propose an approach for sentiment analysis, which is devoted to adopting fastText with Recurrent neural network variants to represent textual data efficiently. Then, it employs the new representations to perform the classification task. Its main objective is to enhance the performance of well-known Recurrent Neural Network (RNN) variants in terms of classification accuracy and handle large scale data. In addition, we propose a distributed intelligent system for real-time social big data analytics. It is designed to ingest, store, process, index, and visualize the huge amount of information in real-time. The proposed system adopts distributed machine learning with our proposed method for enhancing decision-making processes. Extensive experiments conducted on two benchmark data sets demonstrate that our proposal for sentiment analysis outperforms well-known distributed recurrent neural network variants (i.e., Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (BiLSTM), and Gated Recurrent Unit (GRU)). Specifically, we tested the efficiency of our approach using the three different deep learning models. The results show that our proposed approach is able to enhance the performance of the three models. The current work can provide several benefits for researchers and practitioners who want to collect, handle, analyze and visualize several sources of information in real-time. Also, it can contribute to a better understanding of public opinion and user behaviors using our proposed system with the improved variants of the most powerful distributed deep learning and machine learning algorithms. Furthermore, it is able to increase the classification accuracy of several existing works based on RNN models for sentiment analysis.
    Keywords: Big data | FastText | Recurrent neural networks | LSTM | BiLSTM | GRU | Natural language processing | Sentiment analysis | Social big data analytics


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 15
    حجم فایل: 882 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi