دانلود مقاله انگلیسی رایگان:شناسایی عوامل تأثیر زیاد کیفیت هوا در مقیاس ملی با استفاده از داده های بزرگ و تکنیک های یادگیری ماشین - 2020
تبریک 1399
دانلود مقاله انگلیسی داده های بزرگ رایگان
  • Identification of high impact factors of air quality on a national scale using big data and machine learning techniques Identification of high impact factors of air quality on a national scale using big data and machine learning techniques
    Identification of high impact factors of air quality on a national scale using big data and machine learning techniques

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Identification of high impact factors of air quality on a national scale using big data and machine learning techniques


    ترجمه فارسی عنوان مقاله:

    شناسایی عوامل تأثیر زیاد کیفیت هوا در مقیاس ملی با استفاده از داده های بزرگ و تکنیک های یادگیری ماشین


    منبع:

    Sciencedirect - Elsevier - Journal of Cleaner Production, 244 (2020) 118955: doi:10:1016/j:jclepro:2019:118955


    نویسنده:

    Jun Ma a, b, Yuexiong Ding b, Jack C.P. Cheng a, Feifeng Jiang c, Yi Tan d, Vincent J.L. Gan a, Zhiwei Wan


    چکیده انگلیسی:

    To effectively control and prevent air pollution, it is necessary to study the influential factors of air quality. A number of previous studies have explored the relationships between air pollution and related factors. However, the methods currently used either cannot well address the multicollinearity problem or fail to explain the importance of the influential factors. Moreover, most of the existing literature limited their studied area in a city or a small region and studied factors in one aspect. There is a lack of studies that analyze the influential factors from the perspective of a country or take into consideration multiple variables. To fill the research gap, this paper proposes a multivariate analysis in the national scale to investigate the most important factors of air quality. In order to study as much influential factors as possible, 171 features ranging from environmental, demographical, economic, meteorological, and energy, were collected and analyzed. To tackle such a “big data” problem, a non-linear machine learning algorithm namely Extreme Gradient Boosting (XGBoost) is utilized to model the relationship and measure the variable importance. Geographical Information System (GIS) is employed to preprocess the diversified variables and visualize the results. Performance of XGBoost is compared with other models and its parameters are tuned using Bayesian Optimization. Experimental results of a case study in the U.S. show that our methodology framework can effectively uncover the important factors of air quality. Six kinds of factors are found to have the largest impact on air quality. Practical suggestions are also proposed from the six aspects to control and prevent air pollution.
    Keywords: Air quality index | Big data | GIS | National scale | Variable importance | XGBoost


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 13
    حجم فایل: 1748 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi