دانلود مقاله انگلیسی رایگان:شناسایی اشرشیا کولی تولید کننده سم غیر شیتا Sh157 با استفاده از روشهای یادگیری عمیق با تصاویر میکروسکوپ فوق قطبی - 2020
تبریک 1399
دانلود مقاله انگلیسی داده های بزرگ رایگان
  • Identifying non-O157 Shiga toxin-producing Escherichia coli (STEC) using deep learning methods with hyperspectral microscope images Identifying non-O157 Shiga toxin-producing Escherichia coli (STEC) using deep learning methods with hyperspectral microscope images
    Identifying non-O157 Shiga toxin-producing Escherichia coli (STEC) using deep learning methods with hyperspectral microscope images

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Identifying non-O157 Shiga toxin-producing Escherichia coli (STEC) using deep learning methods with hyperspectral microscope images


    ترجمه فارسی عنوان مقاله:

    شناسایی اشرشیا کولی تولید کننده سم غیر شیتا Sh157 با استفاده از روشهای یادگیری عمیق با تصاویر میکروسکوپ فوق قطبی


    منبع:

    Sciencedirect - Elsevier - Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 224 (2020) 117386: doi:10:1016/j:saa:2019:117386


    نویسنده:

    Rui Kang a, b, Bosoon Park b, *, Kunjie Chen a, *


    چکیده انگلیسی:

    Non-O157 Shiga toxin-producing Escherichia coli (STEC) serogroups such as O26, O45, O103, O111, O121 and O145 often cause illness to people in the United States and the conventional identification of these “Big-Six” are complex. The label-free hyperspectral microscope imaging (HMI) method, which provides spectral “fingerprints” information of bacterial cells, was employed to classify serogroups at the cellular level. In spectral analysis, principal component analysis (PCA) method and stacked auto-encoder (SAE) method were conducted to extract principal spectral features for classification task. Based on these features, multiple classifiers including linear discriminant analysis (LDA), support vector machine (SVM) and soft-max regression (SR) methods were evaluated. Different sizes of datasets were also tested in search for the suitable classification models. Among the results, SAE-based classification models performed better than PCA-based models, achieving classification accuracy of SAE-LDA (93.5%), SAE-SVM (94.9%) and SAE-SR (94.6%), respectively. In contrast, classification results of PCA-based methods such as PCA-LDA, PCA-SVM and PCA-SR were only 75.5%, 85.7% and 77.1%, respectively. The results also suggested the increasing number of training samples have positive effects on classification models. Taking advantage of increasing dataset, the SAE-SR classification model finally performed better than others with average accuracy of 94.9% in classifying STEC serogroups. Specifically, O103 serogroup was classified with the highest accuracy of 97.4%, followed by O111 (96.5%), O26 (95.3%), O121 (95%), O145 (92.9%) and O45 (92.4%), respectively. Thus, the HMI technology coupled with SAE-SR classification model has the potential for “Big-Six” identification.
    Keywords: Foodborne bacteria | Classification | Food safety | Machine learning | Stacked auto-encoder | Optical method


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 8
    حجم فایل: 1810 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi