دانلود مقاله انگلیسی رایگان:مطالعه رفتار تنظیم دما برای سیستم های تهویه مطبوع اتاق بر اساس داده های بزرگ - 2020
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی داده های بزرگ رایگان
  • A study on temperature-setting behavior for room air conditioners based on big data A study on temperature-setting behavior for room air conditioners based on big data
    A study on temperature-setting behavior for room air conditioners based on big data

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    A study on temperature-setting behavior for room air conditioners based on big data


    ترجمه فارسی عنوان مقاله:

    مطالعه رفتار تنظیم دما برای سیستم های تهویه مطبوع اتاق بر اساس داده های بزرگ


    منبع:

    Sciencedirect - Elsevier - Journal of Building Engineering, Journal Pre-proof, 101197: doi:10:1016/j:jobe:2020:101197


    نویسنده:

    Lu Yan, Meng Liu, Kai Xue, Ziwei Zhang


    چکیده انگلیسی:

    The set-point temperature of room air conditioners (RACs) is extremely critical for cooling energy consumption of residential buildings. However, current research on temperature-setting behavior is limited owing to the limitations of data acquisition. This study aims to identify the typical temperature-setting patterns for RACs and explore the association of temperature-setting behavior with other RAC operation characteristics. The data obtained from the big data cloud platform of an RAC manufacturer were analyzed in this study. These data consist of measured data from 966 bedroom RACs (BRACs) and 321 living room RACs (LRACs). First, the RAC operation characteristics, involving five parameters, namely, set-point temperature, set wind speed, indoor temperature, operation duration, and energy consumption, were extracted from the raw data by transforming, aggregating, and merging the bottom-level measured data. Subsequently, cluster analysis was performed to identify various and typical temperature-setting behavior patterns. Five typical temperature-setting patterns for BRACs and six typical patterns for LRACs were obtained. Afterwards, data mining methods of difference analysis and association analysis were employed to explore the differences and association, respectively, of different temperature-setting patterns with other operation characteristics of RACs (e.g., set wind speed, indoor air temperature, operation duration, and energy consumption). The results of this study can provide researchers with references of temperature-setting strategies in residential building energy simulation and quantify the energy impacts of diverse temperature-setting patterns in residential buildings.
    Keywords: Occupant behavior | Room air conditioner | Set-point temperature | Data mining | Cluster analysis


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 43
    حجم فایل: 1140 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi