دانلود مقاله انگلیسی رایگان:رویکرد مبتنی بر داده کاوی برای بررسی تأثیر مصرف قهوه کافئین دار بر تولید سیگنالهای بالقوه برانگیخته بصری حالت پایدار - 2019
سیزه به در
دانلود مقاله انگلیسی داده کاوی رایگان
  • Data mining based approach to study the effect of consumption of caffeinated coffee on the generation of the steady-state visual evoked potential signals Data mining based approach to study the effect of consumption of caffeinated coffee on the generation of the steady-state visual evoked potential signals
    Data mining based approach to study the effect of consumption of caffeinated coffee on the generation of the steady-state visual evoked potential signals

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Data mining based approach to study the effect of consumption of caffeinated coffee on the generation of the steady-state visual evoked potential signals


    ترجمه فارسی عنوان مقاله:

    رویکرد مبتنی بر داده کاوی برای بررسی تأثیر مصرف قهوه کافئین دار بر تولید سیگنالهای بالقوه برانگیخته بصری حالت پایدار


    منبع:

    Sciencedirect - Elsevier - Computers in Biology and Medicine, 115 (2019) 103526: doi:10:1016/j:compbiomed:2019:103526


    نویسنده:

    Kishore K. Tarafdar a, Bikash K. Pradhan a, Suraj K. Nayak a, Anwesha Khasnobish b, Sumit Chakravarty c, Sirsendu S. Ray a, Kunal Pal a,


    چکیده انگلیسی:

    The steady-state visual evoked potentials (SSVEP), are elicited at the parieto-occipital region of the cortex when a light source (3.5–75 Hz), flickering at a constant frequency, stimulates the retinal cells. In the last few decades, researchers have reported that caffeine enhances the vigilance and the executive control of visual attention. However, no study has investigated the effect of caffeinated coffee on the SSVEP response, which is used for controlling the brain-computer interface (BCI) devices for rehabilitative applications. The current work proposes a data mining-based approach to gain insight into the alterations in the SSVEP signals after the consumption of caffeinated coffee. Recurrence quantification analysis (RQA) of the electroencephalogram (EEG) signals was employed for this purpose. The EEG signals were acquired at seven frequencies of photic stimuli. The stimuli frequencies were chosen such that they were distributed throughout the EEG frequency bands. The prominent SSVEP signals were identified using the Canonical Correlation Analysis (CCA) method. Several statistical features were extracted from the recurrence plot of the SSVEP signals. Statistical analyses using the t-test and decision tree-based methods helped to select the most relevant features, which were then classified using Automated Neural Network (ANN). The relevant features could be classified with a maximum accuracy of 97%. This supports our hypothesis that the consumption of caffeinated coffee can alter the SSVEP response. In conclusion, utmost care should be taken in selecting the features for designing BCI devices.
    Keywords: SSVEP | EEG | Caffeine | Canonical correlation analysis | Recurrence quantification analysis | Multilayer perceptron network


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 14
    حجم فایل: 2607 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi