دانلود مقاله انگلیسی رایگان:مدل سازی هیدرولوژیکی حوضه کارست با استفاده از مدلهای مفهومی و داده کاوی بهم چسبیده - 2019
سیزه به در
دانلود مقاله انگلیسی داده کاوی رایگان
  • Hydrological modelling of karst catchment using lumped conceptual and data mining models Hydrological modelling of karst catchment using lumped conceptual and data mining models
    Hydrological modelling of karst catchment using lumped conceptual and data mining models

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Hydrological modelling of karst catchment using lumped conceptual and data mining models


    ترجمه فارسی عنوان مقاله:

    مدل سازی هیدرولوژیکی حوضه کارست با استفاده از مدلهای مفهومی و داده کاوی بهم چسبیده


    منبع:

    Sciencedirect - Elsevier - Journal of Hydrology, 576 (2019) 98-110: doi:10:1016/j:jhydrol:2019:06:036


    نویسنده:

    Cenk Sezena, Nejc Bezakb, Yun Baic, Mojca Šrajb,⁎


    چکیده انگلیسی:

    Hydrological modelling is a challenging and significant issue, especially in nonhomogeneous catchments in terms of geology, and it is an essential part of water resources management. In this study, daily rainfall-runoff modelling was carried out using the lumped conceptual model, the artificial neural network (ANN), the deepneural network (DNN), and regression tree (RT) data mining models for the nonhomogeneous karst Ljubljanica catchment and four of its sub-catchments in Slovenia with different geological characteristics. Model performance was evaluated using several performance criteria and additional investigation of low and high flows was carried out. The results of the study indicate that the Génie Rural à 4 paramètres Journalier (GR4J) lumped conceptual model yielded better modelling performance compared to the data-driven models, namely ANN, DNN and RT models. Moreover, the enhanced version of the GR4J model (i.e. GR6J) also yielded good performance in terms of the recession part. The RT model yielded the worst performance regarding runoff forecasting among the examined models in the case of all five investigated catchments. However, ANN and DNN data-driven models were slightly more successful in modelling the hydrograph recession in the case of karst sub-catchments compared to the GR4J lumped conceptual model structure. Inclusion of additional meteorological variables to ANN and DNN does not significantly improve modelling results.
    Keywords: Hydrological model | Lumped conceptual model | Data mining | Karst | Nonhomogeneous catchment | Ljubljanica River


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 13
    حجم فایل: 2836 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi