دانلود مقاله انگلیسی رایگان:نقشه برداری پتانسیل آب زیرزمینی مبتنی بر GIS در دشت شاهرود ایران: مقایسه بین روشهای آماری (دو متغیره و چند متغیره) ، داده کاوی و MCDM - 2019
سیزه به در
دانلود مقاله انگلیسی داده کاوی رایگان
  • GIS-based groundwater potential mapping in Shahroud plain, Iran: A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches GIS-based groundwater potential mapping in Shahroud plain, Iran: A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches
    GIS-based groundwater potential mapping in Shahroud plain, Iran: A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    GIS-based groundwater potential mapping in Shahroud plain, Iran: A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches


    ترجمه فارسی عنوان مقاله:

    نقشه برداری پتانسیل آب زیرزمینی مبتنی بر GIS در دشت شاهرود ایران: مقایسه بین روشهای آماری (دو متغیره و چند متغیره) ، داده کاوی و MCDM


    منبع:

    Sciencedirect - Elsevier - Science of the Total Environment 658 (2019) 160–177


    نویسنده:

    Alireza Arabameri a,⁎, Khalil Rezaei b, Artemi Cerda c, Luigi Lombardo d, Jesús Rodrigo-Comino e


    چکیده انگلیسی:

    In arid and semi-arid areas, groundwater resource is one of themost importantwater sources by the humankind. Knowledge of groundwater distribution over space, associated flow and basic exploitation measures can play a significant role in planning sustainable development, especially in arid and semi-arid areas. Groundwater potentialmapping (GWPM) fits in this context as the tool used to predict the spatial distribution of groundwater. In this researchwe tested four GIS-basedmodels for GWPM, consisting of: i) randomforest (RF); ii) weight of evidence (WoE); iii) binary logistic regression (BLR); and iv) technique for order preference by similarity to ideal solution (TOPSIS) multi-criteria. The Shahroud plain located in Iran, was selected to research thewater scarcity and overexploitation of groundwater resources over the past 20 years. In this research, using Iranian Department ofWater ResourcesManagement data, and extensive field surveys, 122 groundwaterwell datawith high potential yield of ≥11m3 h−1 were selected for GWPM. Specifically, we generated four different models selecting 70% (n=85) of thewells and validated the resulting GWPmaps upon the complementary 30% (n=37).A total of fifteen ground water conditioning factors to explain the groundwater well distribution over the Shahroud plain were selected. From the Advanced Land Observing Satellite (ALOS), a DEM(30mresolution) was extracted to calculate a set of morphometric propertieswhichwere combinedwith thematic ones such as land use/land cover (LU/LC) and Soil Type (ST). Results show that in RF (LU/LC), LR (ST), and AHP (Slope) are the most relevant contributors to groundwater occurrence. After that, using the natural break method, final maps were divided into five susceptibility classes of very low, low,moderate, high, and very high. The accuracy of modelswas ultimately tested using prediction rate (validation data), success rate (training data) and the seed cell area index (SCAI) indicators. Results of validation show that BLR with prediction rate of 0.905 (90.5%) and success rate of 0.918 (91.8%) had higher accuracy than WoE, RF and TOPSIS models with respective prediction rates of 0.885, 0.873 and 0.870 (88.5%, 87.3%, and 87%) and success rate of 0.900, 0.889, and 0.881 (90%, 88.9%, and 88.1%). SCAI results show that all models have acceptable classification accuracy although BLR outperformed the other models in terms of accuracy. Results show that the combination of remote sensing (RS) data and geographic information system (GIS) with new approaches can be used as a powerful tool in GWPM in arid and semi-arid areas. The results of this investigation introduced a potential novel methodology that could be used by decision-makers for the sustainable management of ground water resources.
    Keywords: Random forest | Weight of evidence | Binary logistic regression | Decision making | Semi-arid region


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 18
    حجم فایل: 3577 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi