دانلود مقاله انگلیسی رایگان:استقرار مدل های پیش بینی خنک کننده افقی کوتاه مدت و میان مدت برای داده کاوی برای بهینه سازی و مدیریت انرژی ساختمان - 2019
سیزه به در
دانلود مقاله انگلیسی داده کاوی رایگان
  • Deployment of data-mining short and medium-term horizon cooling load forecasting models for building energy optimization and management Deployment of data-mining short and medium-term horizon cooling load forecasting models for building energy optimization and management
    Deployment of data-mining short and medium-term horizon cooling load forecasting models for building energy optimization and management

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Deployment of data-mining short and medium-term horizon cooling load forecasting models for building energy optimization and management


    ترجمه فارسی عنوان مقاله:

    استقرار مدل های پیش بینی خنک کننده افقی کوتاه مدت و میان مدت برای داده کاوی برای بهینه سازی و مدیریت انرژی ساختمان


    منبع:

    Sciencedirect - Elsevier - International Journal of Refrigeration, 98 (2019) 399-409: doi:10:1016/j:ijrefrig:2018:10:017


    نویسنده:

    Tanveer Ahmad a , Huanxin Chen a , ∗, Jan Shair b , Chengliang Xu a


    چکیده انگلیسی:

    In this study, data-mining techniques comprising three forecasting algorithms for accurate and precise cooling load requirement prediction in the building environment, with the primary aim and the objective of improving the load management are applied. Three state-of-the-art cooling load prediction algorithms are –multiple-linear regression (MLR) model, Gaussian process regression (GPR) model and Levenberg–Marquardt backpropagation neural network (LMB-NN) model. The Pearson correlation analysis is prac- ticed calculating the correlation between actual cooling load demand and input feature variables of cli- mate parameters. The impact of climate variability on the building load requirement is also analyzed. Forecasting intervals are divided into two basic parts: (i) 7-day ahead prediction; and (ii) 1-month ahead prediction. To assess the prediction performance, four performance evaluation indices are applied, which are: (i) coefficient of correlation ( R ); (ii) mean absolute error (MAE); (iii) mean absolute percentage error (MAPE); and (iv) coefficient of variation (CV). The model’s performance is compared with the selection of different hidden neurons at different load conditions. The MAPE for 7-day ahead prediction interval by MLR, GPR and LMB-NN model is 13.053%, 0.405% and 2.592%, respectively. Furthermore, the data-mining algorithms are compared and validated with the previous study, and the MAPE of Bayesian regularization neural networks is calculated 2.515% for 7-day ahead prediction. It was witnessed that the algorithms could be applied to facilitate the building cooling load prediction, by applying a relatively limited num- ber of parameters related to energy usage as well as environmental impact in the building environment. The forecasting results show that the three algorithms are effective in predicting the irregular behavior in the data as well as cooling load demand prediction
    Keywords: Water source heat pump | Data mining models | Cooling load prediction | Building load


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 11
    حجم فایل: 3520 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi