دانلود مقاله انگلیسی رایگان:یک رویکرد سه فاز به الگوهای بسیار مهم خصوصی استخراج از جریان داده ها - 2019
سیزه به در
دانلود مقاله انگلیسی داده کاوی رایگان
  • A three-phase approach to differentially private crucial patterns mining over data streams A three-phase approach to differentially private crucial patterns mining over data streams
    A three-phase approach to differentially private crucial patterns mining over data streams

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    A three-phase approach to differentially private crucial patterns mining over data streams


    ترجمه فارسی عنوان مقاله:

    یک رویکرد سه فاز به الگوهای بسیار مهم خصوصی استخراج از جریان داده ها


    منبع:

    Sciencedirect - Elsevier - Computers & Security, 82 (2019) 30-48: doi:10:1016/j:cose:2018:12:004


    نویسنده:

    Jinyan Wang a , b , Chen Liu b , Xingcheng Fu b , Xudong Luo a , b , Xianxian Li


    چکیده انگلیسی:

    Frequent patterns mining over transactional data streams is an important task for a wide range of online data mining applications. Nevertheless, mining crucial patterns is even more appropriate than frequent patterns over transactional data streams, because crucial patterns are the subset of frequent patterns with the minimum storage cost and information lossless extraction. In this paper, we argue that the privacy of mining crucial patterns from data streams (i.e., aggregating information from individuals) is more likely to be leaked than static scenarios, due to successive releases. However, to the best of our knowledge, there is little work on differential privacy in continuously publishing crucial patterns from data streams. To this end, this paper proposes a real-time differentially private crucial pattern computation algorithm which designs a three-phase mechanism (i.e., the preprocessing phase, the deep-going calculation phase, and the noise-mining phase) at every timestamp. The algorithm is able to not only improve the utility of the crucial pattern statistics as much as possible which satisfy differential privacy, but also reduce the average mining time without incurring high maintenance cost according to the feature of crucial patterns. To reduce the number of calls to crucial pattern computation algorithm, we design two-dissimilarity formulas according to the relationship between frequent patterns and crucial patterns to decide to return either low noisy statistic or accurately approximated statistic in the first two phases. When the low noisy statistic needs to be turned, the algorithm goes into the noise-mining phase. To obtain private crucial patterns, we first filter crucial pattern candidate set by perturbing the scoring functions, and then add independent Laplace noise to their supports. Finally, we conduct extensive experiments on dense datasets and sparse datasets to show the effectiveness and efficiency of our algorithm.
    Keywords: Differential privacy | Crucial patterns | Data streams | Privacy leakage | Data mining


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 19
    حجم فایل: 1359 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi