دانلود مقاله انگلیسی رایگان:استخراج ادبیات با کمک یادگیری عمیق برای داده های تابش آزمایشگاهی - 2019
تبریک 1399
دانلود مقاله انگلیسی داده کاوی رایگان
  • Deep learning-assisted literature mining for in vitro radiosensitivity data Deep learning-assisted literature mining for in vitro radiosensitivity data
    Deep learning-assisted literature mining for in vitro radiosensitivity data

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Deep learning-assisted literature mining for in vitro radiosensitivity data


    ترجمه فارسی عنوان مقاله:

    استخراج ادبیات با کمک یادگیری عمیق برای داده های تابش آزمایشگاهی


    منبع:

    Sciencedirect - Elsevier - Radiotherapy and Oncology, 139 (2019) 87-93: doi:10:1016/j:radonc:2019:07:003


    نویسنده:

    Shuichiro Komatsu a, Takahiro Oike a,⇑, Yuka Komatsu a, Yoshiki Kubota b, Makoto Sakai b, Toshiaki Matsui a, Endang Nuryadi a,c, Tiara Bunga Mayang Permata a,c, Hiro Sato a, Hidemasa Kawamura b, Masahiko Okamoto b, Takuya Kaminuma b, Kazutoshi Murata b, Naoko Okano a, Yuka Hirota a, Tatsuya Ohno b, Jun-ichi Saitoh d, Atsushi Shibata e, Takashi Nakano a,


    چکیده انگلیسی:

    Background and purpose: Integrated analysis of existing radiosensitivity data obtained by the goldstandard clonogenic assay has the potential to improve our understanding of cancer cell radioresistance. However, extraction of radiosensitivity data from the literature is highly labor-intensive. To aid in this task, using deep convolutional neural networks (CNNs) and other computer technologies, we developed an analysis pipeline that extracts radiosensitivity data derived from clonogenic assays from the literature. Materials and methods: Three classifiers (C1–3) were developed to identify publications containing radiosensitivity data derived from clonogenic assays. C1 uses Faster Regions CNN with Inception Resnet v2 (fRCNN-IRv2), VGG-16, and Optical Character Recognition (OCR) to identify publications that contain semi-logarithmic graphs showing radiosensitivity data derived from clonogenic assays. C2 uses fRCNN-IRv2 and OCR to identify publications that contain bar graphs showing radiosensitivity data derived from clonogenic assays. C3 is a program that identifies publications containing keywords related to radiosensitivity data derived from clonogenic assays. A program (iSF2) was developed using Mask RCNN and OCR to extract surviving fraction after 2-Gy irradiation (SF2) as assessed by clonogenic assays, presented in semi-logarithmic graphs. The efficacy of C1–3 and iSF2 was tested using seven datasets (1805 and 222 publications in total, respectively). Results: C1–3 yielded sensitivity of 91.2% ± 3.4% and specificity of 90.7% ± 3.6%. iSF2 returned SF2 values that were within 2.9% ± 2.6% of the SF2 values determined by radiation oncologists. Conclusion: Our analysis pipeline is potentially useful to acquire radiosensitivity data derived from clonogenic assays from the literature.
    Keywords: Clonogenic assays | Radiosensitivity | Deep learning | Convolutional neural networks | Radiation oncology


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 7
    حجم فایل: 749 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi