دانلود مقاله انگلیسی رایگان:استفاده از پارامترهای تحلیل راه رفتن برای طبقه بندی پارکینسونیسم: یک رویکرد داده کاوی - 2019
سیزه به در
دانلود مقاله انگلیسی داده کاوی رایگان
  • Using gait analysis’ parameters to classify Parkinsonism: A data mining approach Using gait analysis’ parameters to classify Parkinsonism: A data mining approach
    Using gait analysis’ parameters to classify Parkinsonism: A data mining approach

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Using gait analysis’ parameters to classify Parkinsonism: A data mining approach


    ترجمه فارسی عنوان مقاله:

    استفاده از پارامترهای تحلیل راه رفتن برای طبقه بندی پارکینسونیسم: یک رویکرد داده کاوی


    منبع:

    Sciencedirect - Elsevier - Computer Methods and Programs in Biomedicine, 180 (2019) 105033: doi:10:1016/j:cmpb:2019:105033


    نویسنده:

    Carlo Ricciardi a , b , Marianna Amboni c , d , Chiara De Santis c , Giovanni Improta e , Giampiero Volpe f , Luigi Iuppariello g , h , Gianluca Ricciardelli f , Giovanni D’Addio b , Carmine Vitale i , Paolo Barone c , Mario Cesarelli b , g , ∗, The Motion Analysis “Schola Medica Salernitana”Group 1 , The Biomedical Engineering Unit


    چکیده انگلیسی:

    Introduction: Parkinson’s disease (PD) is the second most common neurodegenerative disorder in the world, while Progressive Supranuclear Palsy (PSP) is an atypical Parkinsonism resembling PD, especially in early stage. Assumed that gait dysfunctions represent a major motor symptom for both pathologies, gait analysis can provide clinicians with subclinical information reflecting subtle differences between these diseases. In this scenario, data mining can be exploited in order to differentiate PD patients at different stages of the disease course and PSP using all the variables acquired through gait analysis. Methods: A cohort of 46 subjects (divided into three groups) affected by PD patients at different stages and PSP patients was acquired through gait analysis and spatial and temporal parameters were anal- ysed. Synthetic Minority Over-sampling Technique was used to balance our imbalanced dataset and cross- validation was applied to provide different training and testing sets. Then, Random Forests and Gradient Boosted Trees were implemented. Results: Accuracy, error, precision, recall, specificity and sensitivity were computed for each group and for both algorithms, including 16 features. Random Forests obtained the highest accuracy (86.4%) but also specificity and sensitivity were particularly high, overcoming the 90% for PSP group. Conclusion: The novelty of the study is the use of a data mining approach on the spatial and temporal parameters of gait analysis in order to classify patients affected by typical (PD) and atypical Parkinsonism (PSP) based on gait patterns. This application would be helpful for clinicians to distinguish PSP from PD at early stage, when the differential diagnosis is particularly challenging.
    Keywords: Parkinson’s disease |Progressive supranuclear palsy | Gait analysis | Data mining | Random forests | Gradient boosted trees


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 6
    حجم فایل: 390 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi