دانلود مقاله انگلیسی رایگان:یک سیستم طبقه بندی sleep apnea متفاوت با شبکه عصبی مبتنی بر سیگنال های شتاب - 2020
بلافاصله پس از پرداخت دانلود کنید

با سلام خدمت کاربران عزیز، به اطلاع می رساند ترجمه مقالاتی که سال انتشار آن ها زیر 2008 می باشد رایگان بوده و میتوانید با وارد شدن در صفحه جزییات مقاله به رایگان ترجمه را دانلود نمایید.

دانلود مقاله انگلیسی شبکه های نورونی رایگان
  • A different sleep apnea classification system with neural network based on the acceleration signals A different sleep apnea classification system with neural network based on the acceleration signals
    A different sleep apnea classification system with neural network based on the acceleration signals

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    A different sleep apnea classification system with neural network based on the acceleration signals


    ترجمه فارسی عنوان مقاله:

    یک سیستم طبقه بندی sleep apnea متفاوت با شبکه عصبی مبتنی بر سیگنال های شتاب


    منبع:

    Sciencedirect - Elsevier - Applied Acoustics, 163 (2020) 107225. doi:10.1016/j.apacoust.2020.107225


    نویسنده:

    Ahmet Hayrettin Yüzer a, Harun Sümbül b, Majid Nour c, Kemal Polat d,⇑


    چکیده انگلیسی:

    Background and objective: The apnea syndrome is characterized by an abnormal breath pause or reduction in the airflow during sleep. It is reported in the literature that it affects 2% of middle-aged women and 4% of middle-aged men, approximately. This study has vital importance, especially for the elderly, the disabled, and pediatric sleep apnea patients. Methods: In this study, a new diagnostic method is developed to detect the apnea event by using a microelectromechanical system (MEMS) based acceleration sensor. It records the value of acceleration by measuring the movements of the diaphragm in three axes during the respiratory. The measurements are carried out simultaneously, a medical spirometer (Fukuda Sangyo), to test the validity of measurement results. An artificial neural network model was designed to determine the apnea event. For the number of neurons in the hidden layer, 1-3-5-10-18-20-25 values were tried, and the network with three hidden neurons giving the most suitable result was selected. In the designed ANN, three layers were formed that three neurons in the hidden layer, the two neurons at the input, and two neurons at the output layer. Results: A study group was formed of 5 patients (having different characteristics (age, height, and body weight)). The patients in the study group have sleep apnea (SA) in different grades. Several 12.723 acceleration data (ACC) in the XYZ-axis from 5 different patients are recorded for apnea event training and detection. The measured accelerometer (ACC) data from one of the patients (called H1) are used to train an ANN. During the training phase, MSE is used to calculate the fitness value of the apnea event. Then Apnea event is detected successfully for the other patients by using ANN trained only with H1’s ACC data. Conclusions: The sleep apnea event detection system is presented by using ANN from directly acceleration values. Measurements are performed by the MEMS-based accelerometer and Industrial Spirometer simultaneously. A total of 12723 acceleration data is measured from 5 different patients. The best result in 7000 iterations was reached (the number of iterations was tried up to 10.000 with 1000 steps). 605 data of only H1 measurements are used to train ANN, and then all data used to check the performance of the ANN as well as H2, H3, H4, and H5 measurement results. MSE performance benchmark shows us that trained ANN successfully detects apnea events. One of the contributions of this study to literature is that only ACC data are used in the ANN training step. After training for one patient, the ANN system can monitor the apnea event situation on-line for others.
    Keywords: Sleep apnea | Acceleration sensor | Acceleration data | Artificial neural network | Medical decision making


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 8
    حجم فایل: 1877 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi