دانلود مقاله انگلیسی رایگان:پیش بینی طول عمر خستگی مواد فلزی با توجه به میانگین اثرات استرس با استفاده از شبکه عصبی مصنوعی - 2020
دانلود بهترین مقالات isi همراه با ترجمه فارسی 2
دانلود مقاله انگلیسی شبکه های نورونی رایگان
  • Fatigue life prediction of metallic materials considering mean stress effects by means of an artificial neural network Fatigue life prediction of metallic materials considering mean stress effects by means of an artificial neural network
    Fatigue life prediction of metallic materials considering mean stress effects by means of an artificial neural network

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Fatigue life prediction of metallic materials considering mean stress effects by means of an artificial neural network


    ترجمه فارسی عنوان مقاله:

    پیش بینی طول عمر خستگی مواد فلزی با توجه به میانگین اثرات استرس با استفاده از شبکه عصبی مصنوعی


    منبع:

    Sciencedirect - Elsevier - International Journal of Fatigue, 135 (2020) 105527. doi:10.1016/j.ijfatigue.2020.105527


    نویسنده:

    Joelton Fonseca Barbosaa,b,c,⁎, José A.F.O. Correiab,d,⁎, R.C.S. Freire Júniora,⁎, Abílio M.P. De Jesusd


    چکیده انگلیسی:

    The mean stress effect plays an important role in the fatigue life predictions, its influence significantly changes high-cycle fatigue behaviour, directly decreasing the fatigue limit with the increase of the mean stress. Fatigue design of structural details and mechanical components must account for mean stress effects in order to guarantee the performance and safety criteria during their foreseen operational life. The purpose of this research work is to develop a new methodology to generate a constant life diagram (CLD) for metallic materials, based on assumptions of Haigh diagram and artificial neural networks, using the probabilistic Stüssi fatigue S-N fields. This proposed methodology can estimate the safety region for high-cycle fatigue regimes as a function of the mean stress and stress amplitude in regions where tensile loading is predominance, using fatigue S-N curves only for two stress R-ratios. In this approach, the experimental fatigue data of the P355NL1 pressure vessel steel available for three stress R-ratios (−1, −0.5, 0), are used. A multilayer perceptron network has been trained with the back-propagation algorithm; its architecture consists of two input neurons (σm, N) and one output neuron (σa). The suggested CLD based on trained artificial neural network algorithm and probabilistic Stüssi fatigue fields applied to dog-bone shaped specimens made of P355NL1 steel showed a good agreement with the high-cycle fatigue experimental data, only using the stress R-ratios equal to 0 and −0.5. Furthermore, a procedure for estimating the fatigue resistance reduction factor, Kf , for the fatigue life prediction of structural details (stress R-ratios equal to 0, 0.15 and 0.3) in extrapolation regions is suggested and used to generate the Kf results for stress R-ratios from −1 to 0.3, based on machine learning artificial neural network algorithm.
    Keywords: Fatigue | Artificial neural network | Back-propagation algorithm | Stüssi model | Constant life diagram


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 11
    حجم فایل: 1552 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi