دانلود مقاله انگلیسی رایگان:ماشین بولتزمن محدود خود سازمان دهنده برای نمایندگی عمیق با استفاده از مشکلات طبقه بندی - 2020
دانلود بهترین مقالات isi همراه با ترجمه فارسی

با سلام خدمت کاربران عزیز، به اطلاع می رساند ترجمه مقالاتی که سال انتشار آن ها زیر 2008 می باشد رایگان بوده و میتوانید با وارد شدن در صفحه جزییات مقاله به رایگان ترجمه را دانلود نمایید.

دانلود مقاله انگلیسی شبکه های نورونی رایگان
  • The Self-Organizing Restricted Boltzmann Machine for Deep Representation with the Application on Classification Problems The Self-Organizing Restricted Boltzmann Machine for Deep Representation with the Application on Classification Problems
    The Self-Organizing Restricted Boltzmann Machine for Deep Representation with the Application on Classification Problems

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    The Self-Organizing Restricted Boltzmann Machine for Deep Representation with the Application on Classification Problems


    ترجمه فارسی عنوان مقاله:

    ماشین بولتزمن محدود خود سازمان دهنده برای نمایندگی عمیق با استفاده از مشکلات طبقه بندی


    منبع:

    Sciencedirect - Elsevier - Expert Systems With Applications, 149 (2020) 113286. doi:10.1016/j.eswa.2020.113286


    نویسنده:

    Saeed Pirmoradi a , Mohammad Teshnehlab b , ∗, Nosratollah Zarghami c , Arash Sharifia


    چکیده انگلیسی:

    Recently, deep learning is proliferating in the field of representation learning. A deep belief network (DBN) consists of a deep network architecture that can generate multiple features of input patterns, us- ing restricted Boltzmann machines (RBMs) as a building block of DBN. A deep learning model can achieve extremely high accuracy in many applications that depend on the model structure. However, specifying various parameters of deep network architecture like the number of hidden layers and neurons is a dif- ficult task even for expert designers. Besides, the number of hidden layers and neurons is typically set manually, while this method is costly in terms of time and computational cost, especially in big data. In this paper, we introduce an approach to determine the number of hidden layers and neurons of the deep network automatically during the learning process. To this end, the input vector is transformed from the feature space with a low dimension into the new feature space with a high dimension in a hidden layer of RBM. In the following, new features are ranked according to their discrimination power between classes in the new space, using the Separability-correlation measure for feature importance ranking algo- rithm. The algorithm uses the mean of weights as a threshold, so the neurons whose weights exceed the threshold are retained, and the others are removed in the hidden layer. The number of retained neurons is presented as a reasonable number of neurons. The number of layers is also determined in the deep model, using the validation data. The proposed approach acts as a regularization method since the neu- rons whose weights are lower than the threshold are removed; thus, RBM learns to copy input merely approximate. It also prevents over-fitting with a suitable number of hidden layers and neurons. Eventu- ally, DBN can determine its structure according to the input data and is the self-organizing model. The experimental results on benchmark datasets confirm the proposed method.
    Keywords: Deep learning | Self-organizing restricted Boltzmann | machines | Separability-correlation measure | MNIST | Moore-set | Wisconsin breast cancer dataset


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 11
    حجم فایل: 1712 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi