دانلود مقاله انگلیسی رایگان:غربالگری هدایت شده با هوش مصنوعی ECG برای کسر کم دفع (EAGLE): منطق و طراحی یک آزمایش تصادفی خوشه عملی - 2020
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی هوش مصنوعی رایگان
  • ECG AI-Guided Screening for Low Ejection Fraction (EAGLE): Rationale and design of a pragmatic cluster randomized trial ECG AI-Guided Screening for Low Ejection Fraction (EAGLE): Rationale and design of a pragmatic cluster randomized trial
    ECG AI-Guided Screening for Low Ejection Fraction (EAGLE): Rationale and design of a pragmatic cluster randomized trial

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    ECG AI-Guided Screening for Low Ejection Fraction (EAGLE): Rationale and design of a pragmatic cluster randomized trial


    ترجمه فارسی عنوان مقاله:

    غربالگری هدایت شده با هوش مصنوعی ECG برای کسر کم دفع (EAGLE): منطق و طراحی یک آزمایش تصادفی خوشه عملی


    منبع:

    Sciencedirect - Elsevier - American Heart Journal, 219 (2020) 31-36. doi:10.1016/j.ahj.2019.10.007


    نویسنده:

    Xiaoxi Yao, PhD, a,b,c Rozalina G. McCoy, MD, MS, a,d Paul A. Friedman, MD, c Nilay D. Shah, PhD, a,b Barbara A. Barry, PhD, b Emma M. Behnken, e Jonathan W. Inselman, M.S., a Zachi I. Attia, M.S., c and Peter A. Noseworthy, MDc Rochester, MN


    چکیده انگلیسی:

    Background A deep learning algorithm to detect low ejection fraction (EF) using routine 12-lead electrocardiogram (ECG) has recently been developed and validated. The algorithm was incorporated into the electronic health record (EHR) to automatically screen for low EF, encouraging clinicians to obtain a confirmatory transthoracic echocardiogram (TTE) for previously undiagnosed patients, thereby facilitating early diagnosis and treatment. Objectives To prospectively evaluate a novel artificial intelligence (AI) screening tool for detecting low EF in primary care practices. Design The EAGLE trial is a pragmatic two-arm cluster randomized trial (NCT04000087) that will randomize N100 clinical teams (i.e., clusters) to either intervention (access to the new AI screening tool) or control (usual care) at 48 primary care practices across Minnesota and Wisconsin. The trial is expected to involve approximately 400 clinicians and 20,000 patients. The primary endpoint is newly discovered EF ≤50%. Eligible patients will include adults who undergo ECG for any reason and have not been previously diagnosed with low EF. Data will be pulled from the EHR, and no contact will be made with patients. A positive deviance qualitative study and a post-implementation survey will be conducted among select clinicians to identify facilitators and barriers to using the new screening report. Summary This trial will examine the effectiveness of the AI-enabled ECG for detection of asymptomatic low EF in routine primary care practices and will be among the first to prospectively evaluate the value of AI in real-world practice. Its findings will inform future implementation strategies for the translation of other AI-enabled algorithms. (Am Heart J 2020;219:31-6.)


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 6
    حجم فایل: 121 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi