دانلود مقاله انگلیسی رایگان:استفاده از هوش مصنوعی برای پیش بینی عفونت محل جراحی بعد از عمل: یک گروه گذشته نگر از 4046 اتصالات خلفی ستون فقرات - 2020
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی هوش مصنوعی رایگان
  • Using artificial intelligence (AI) to predict postoperative surgical site infection: A retrospective cohort of 4046 posterior spinal fusions Using artificial intelligence (AI) to predict postoperative surgical site infection: A retrospective cohort of 4046 posterior spinal fusions
    Using artificial intelligence (AI) to predict postoperative surgical site infection: A retrospective cohort of 4046 posterior spinal fusions

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    Using artificial intelligence (AI) to predict postoperative surgical site infection: A retrospective cohort of 4046 posterior spinal fusions


    ترجمه فارسی عنوان مقاله:

    استفاده از هوش مصنوعی برای پیش بینی عفونت محل جراحی بعد از عمل: یک گروه گذشته نگر از 4046 اتصالات خلفی ستون فقرات


    منبع:

    Sciencedirect - Elsevier - Clinical Neurology and Neurosurgery, 192 (2020) 105718. doi:10.1016/j.clineuro.2020.105718


    نویسنده:

    Benjamin S. Hopkinsa, Aditya Mazmudarb, Conor Driscolla, Mark Sveta, Jack Goergena, Max Kelstena, Nathan A. Shlobina, Kartik Kesavabhotlaa, Zachary A Smitha, Nader S Dahdaleha


    چکیده انگلیسی:

    Objectives: Machine Learning and Artificial Intelligence (AI) are rapidly growing in capability and increasingly applied to model outcomes and complications within medicine. In spinal surgery, post-operative surgical site infections (SSIs) are a rare, yet morbid complication. This paper applied AI to predict SSIs after posterior spinal fusions. Patients and Methods: 4046 posterior spinal fusions were identified at a single academic center. A Deep Neural Network DNN classification model was trained using 35 unique input variables The model was trained and tested using cross-validation, in which the data were randomly partitioned into training n=3034 and testing n=1012 datasets. Stepwise multivariate regression was further used to identify actual model weights based on predictions from our trained model. Results: The overall rate of infection was 1.5 %. The mean area under the curve (AUC), representing the accuracy of the model, across all 300 iterations was 0.775 (95 % CI [0.767,0.782]) with a median AUC of 0.787. The positive predictive value (PPV), representing how well the model predicted SSI when a patient had SSI, over all predictions was 92.56 % with a negative predictive value (NPV), representing how well the model predicted absence of SSI when a patient did not have SSI, of 98.45 %. In analyzing relative model weights, the five highest weighted variables were Congestive Heart Failure, Chronic Pulmonary Failure, Hemiplegia/Paraplegia, Multilevel Fusion and Cerebrovascular Disease respectively. Notable factors that were protective against infection were ICU Admission, Increasing Charlson Comorbidity Score, Race (White), and being male. Minimally invasive surgery (MIS) was also determined to be mildly protective. Conclusion: Machine learning and artificial intelligence are relevant and impressive tools that should be employed in the clinical decision making for patients. The variables with the largest model weights were primarily comorbidity related with the exception of multilevel fusion. Further study is needed, however, in order to draw any definitive conclusions.
    Keywords: Artificial intelligence | Spine surgery | Surgical site infection


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 5
    حجم فایل: 292 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi