دانلود مقاله انگلیسی رایگان:AI-PLAX: ارزیابی و معاینه جفت مبتنی بر هوش مصنوعی با استفاده از عکس - 2020
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی هوش مصنوعی رایگان
  • AI-PLAX: AI-based placental assessment and examination usingphotos AI-PLAX: AI-based placental assessment and examination usingphotos
    AI-PLAX: AI-based placental assessment and examination usingphotos

    سال انتشار:

    2020


    عنوان انگلیسی مقاله:

    AI-PLAX: AI-based placental assessment and examination usingphotos


    ترجمه فارسی عنوان مقاله:

    AI-PLAX: ارزیابی و معاینه جفت مبتنی بر هوش مصنوعی با استفاده از عکس


    منبع:

    Sciencedirect - Elsevier - Computerized Medical Imaging and Graphics, 84 (2020) 101744. doi:10.1016/j.compmedimag.2020.101744


    نویسنده:

    Yukun Chena,∗, Zhuomin Zhanga, Chenyan Wua, Dolzodmaa Davaasurena,Jeffery A. Goldsteinb, Alison D. Gernanda,1, James Z. Wanga,∗,1a


    چکیده انگلیسی:

    Post-delivery analysis of the placenta is useful for evaluating health risks of both the mother and baby. In the U.S., however, only about 20% of placentas are assessed by pathology exams, and placental data is often missed in pregnancy research because of the additional time, cost, and expertise needed. A computer-based tool that can be used in any delivery setting at the time of birth to provide an immediate and comprehensive placental assessment would have the potential to not only to improve health care, but also to radically improve medical knowledge. In this paper, we tackle the problem of automatic placental assessment and examination using photos. More concretely, we first address morphological characterization, which includes the tasks of placental image segmentation, umbilical cord insertion point localization, and maternal/fetal side classification. We also tackle clinically meaningful feature analysis of placentas, which comprises detection of retained placenta (i.e., incomplete placenta), umbilical cord knot, meconium, abruption, chorioamnionitis, and hypercoiled cord, and categorization of umbilical cord insertion type. We curated a dataset consisting of approximately 1300 placenta images taken at Northwestern Memorial Hospital, with hand-labeled pixel-level segmentation map, cord insertion point and other information extracted from the associated pathology reports. We developed the AI-based Placental Assessment and Examination system (AI-PLAX), which is a novel two-stage photograph-based pipeline for fully automated analysis. In the first stage, we use three encoder-decoder convolutional neural networks with a shared encoder to address morphological characterization tasks by employing a transfer-learning training strategy. In the second stage, we employ distinct sub-models to solve different feature analysis tasks by using both the photograph and the output of the first stage. We evaluated the effectiveness of our pipeline by using the curated dataset as well as the pathology reports in the medical record. Through extensive experiments, we demonstrate our system is able to produce accurate morphological characterization and very promising performance on aforementioned feature analysis tasks, all of which may possess clinical impact and contribute to future pregnancy research. This work is the first for comprehensive, automated, computer-based placental analysis and will serve as a launchpad for potentially multiple future innovations.
    Keywords: Deep learning | Transfer learning | Placenta | Photo image analysis | Pathology


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 15
    حجم فایل: 3870 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi